The Gluon Spin Contribution to the Proton Spin

Kieran Boyle
RIKEN BNL Research Center

Outline
Motivation
Tools
Measurement
Constraint on Gluon Spin Contribution
Future
The nucleon is a composite particle, made up of quarks and gluons

Properties of the proton arise from properties of the constituents

- Charge: \[+1 = \frac{2}{3} + \frac{2}{3} + \frac{1}{3} \]
The Nucleon Structure

- The nucleon is a composite particle, made up of quarks and gluons
- Properties of the proton arise from properties of the constituents
 - Charge: $+1 = \frac{2}{3} + \frac{2}{3} + \frac{1}{3}$

\[+1 = e_u \int_0^1 dx [u(x) - \bar{u}(x)] + e_d \int_0^1 dx [d(x) - \bar{d}(x)] + e_s \int_0^1 dx [s(x) - \bar{s}(x)] + \ldots\]
Structure of the Nucleon

- Properties of the proton arise from properties of the constituents
 - Momentum: \(1 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \)
Structure of the Nucleon

• Properties of the proton arise from properties of the constituents
 – Momentum: \[1 \neq \sum_q \int_0^1 x dq [q(x) + \bar{q}(x)] \]
• Properties of the proton arise from properties of the constituents
 – Momentum: \[1 = \sum_q \int_0^1 x dq(x) + \bar{q}(x) + \int_0^1 x dg(x) \]
Structure of the Nucleon

- Properties of the proton arise from properties of the constituents
 - Momentum:
 \[1 = \sum_{q} \int_{0}^{1} x \, dx \left[q(x) + \bar{q}(x) \right] + \int_{0}^{1} x \, dx \, g(x) \]

- Knowledge of the gluon PDF comes primarily from scaling violation in DIS measurements, accessible due to large range of \(x \) and \(Q^2 \)
• Properties of the proton arise from properties of the constituents
 – Spin:

\[S_p = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \]
Structure of the Nucleon

- Properties of the proton arise from properties of the constituents
 - Spin:
 \[S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]
 \[\Delta \Sigma = \sum \int_0^1 dx [q^+(x) - q^-(x)] \sim 0.3 \]
 \[\Delta G = \int_0^1 dx [g^+(x) - g^-(x)] \]
 \[L_q = \text{quark OAM} \]
 \[L_g = \text{gluon OAM} \]

Where is the proton spin?
Helicity Structure of the Nucleon

\[S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{z,q} + L_{z,g} \]

- Can use DIS to understand the quark spin contribution, \(\Delta \Sigma \)
- For the gluon spin contribution, \(\Delta G \), current fixed target data do not cover a wide enough \(x \) and \(Q^2 \) range to determine the gluon contribution
• $\int L dt = 25 \text{ pb}^{-1}$ at $\sqrt{s}=200$ GeV and $P_{\text{max}}=60\%$
• $\int L dt = 50 \text{ pb}^{-1}$ at $\sqrt{s}=500$ GeV and $P_{\text{max}}=50\%$
 – Expect another 200 pb$^{-1}$ next year at 500 GeV
• Change proton helicity every 106 ns
PHENIX Detector

- **Electromagnetic Calorimeter:**
 - 6 sectors PbSc with 64 layers of Pb and scintillator
 - 2 sectors PbGl, used in WA98
 - $\Delta \eta \times \Delta \phi \approx 0.01 \times 0.01$

- **Charged Particle Veto**
 - Pad chambers directly in front of EMCal

Luminosity Determination

- **Beam Beam Counters**
 - $3.1<|\eta|<3.9$ from IP along z axis, detect charged particles

- **Zero Degree Calorimeters**
 - 18m from IP, detect neutrons
Measuring A_{LL}

$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{1}{P_bP_y} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}$

+ - = Opposite helicity =
++ = Same helicity =

- Helicity Dependent Particle Yields (N)
 - π^0, π^+, π^-, γ, η, etc

- Beam Polarization (P)

- Relative Luminosity ($R=L_{++}/L_{+-}$)
Calculating A_{LL}

1. Calculate $A_{LL}(\pi^0+BG)$ and $A_{LL}(BG)$ separately.
2. Get background ratio (w_{BG}) from fit of all data.
3. Subtract $A_{LL}(BG)$ from $A_{LL}(\pi^0+BG)$:

$$A_{LL}(\pi^0+BG) = w_{\pi^0} \cdot A_{LL}(\pi^0) + w_{BG} \cdot A_{LL}(BG)$$

Two photon invariant mass

- **Red**: Signal+BG region
- **Blue**: BG region

π^0+BG region:
- ± 25 MeV around π^0 peak

BG region:
- two 50 MeV regions around peak
Neutral Pion A_{LL}

- Why π^0?
 - Abundant in pp
 - 99% decay to $\gamma\gamma$
 - Finely segmented EMCal
 - high p_T photon trigger
 \rightarrow large statistics

- 2005:
 - PRD 76, 051106

- 2006:
 - PRL 103, 012003
Constraining ΔG

- Global analysis of helicity PDFs (similar to MSTW, CTEQ but with polarized data)
- DSSV fit world date including p+p for first time.
 - PRL 101:072001, 2008
 - PRD 80:034030, 2009
- RHIC data offer significant constraint at $0.05 < x < 0.2$.
- Large uncertainty remains below RHIC x range.
Joining Forces

• As was presented yesterday, many complications in determining PDF uncertainties
• Initial fit treated all uncertainties as uncorrelated
• Experimentalists joining Theorists to work towards thorough uncertainty determination
 – Proper handling of experimental uncertainties
 – Determination of theoretical uncertainties
 – Inclusion of additional data.
Future ΔG Constraints

- New data from PHENIX and STAR indicate nonzero ΔG
- Higher luminosity at $\sqrt{s}=500$ GeV will extend reach towards lower x
- To get more complete measurement of ΔG, need a polarized EIC
Polarized Electron Ion Collider

- Add electron ring to RHIC \rightarrow eRHIC
- Significantly extend x and Q^2 coverage

![Diagram of eRHIC and current polarized DIS data](image-url)
Polarized Electron Ion Collider

• Add electron ring to RHIC → eRHIC
• Significantly extend x and Q^2 coverage
• Extract ΔG through evolution of g_1^p for $x > 10^{-4}$.
Conclusions

- Quark spin contribution to proton spin ~30%
- Gluon spin contribution poorly known from fixed target polarized DIS
- PHENIX $\pi^0 A_{LL}$ measurements constrain ΔG
- ΔG appears small
 - Need more accurate estimate of uncertainty
 - Joint Exp.-Theo. effort underway
 - New data indicate positive ΔG
- Future polarized electron ring at RHIC (eRHIC) will be able to determine ΔG over wide range in x

THANK YOU
BACKUPS
Accessing ΔG through A_{LL}

Is this valid?

\[
A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma} \otimes D_{\pi/c}}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes \Delta \hat{\sigma} \otimes D_{\pi/c}}
\]

- If $\Delta f = \Delta q$, then we have this from pDIS
- So $r c A_{LL} \approx a_{gg} \Delta g^2 + b_{gq} \Delta g \Delta q + c_{qq} \Delta q^2$

From ep (&pp) (HERA mostly)

pQCD NLO

From e+e- (& SIDIS,pp)

Erice--ISSP 2012 23
Validity of pQCD Framework

π⁰ @ 200 GeV

Direct γ @ 200 GeV

arXiv:0704.3599 [hep-ex]

pQCD Works!