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Historical background. A model of Chadha and Nielsen.

I A toy model with Lorentz-invariance violation (Chadha,

Nielsen 1982):
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I RG evolution. cγ − ce vanishes in the IR. It means that

Lorentz-invariance emerges at low energies.

I LI emergence is more e�cient at strong coupling

I This property holds in morte general theories.
I Yengo, Russo, Serone (2009)
I Giudice, Raidal, Strumia (2010)

I At strong coupling it is natural to use holography.



Overview.

I Our goal is to provide the holographic description of the

Lorentz-invariance at low energies.

I We consider (d + 1) - dimensional space interpolating between

AdS in the bulk and Lifshitz near the boundary (proposed by

Kachru, Liu, Mulligan, 2008)

I We calculate correlators of the scalar �eld in this space

I and dispersion relations of discrete excitations of the �eld (if

the space is surrounded by branes)



Interpolating solution

I The space interpolates between Anti-de Sitter and Lifshitz.

I This space is formed by massive vector AM interacting with

gravity.
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I Equations allow two Lifshitz �xed points and only one of them

is stable.

1 < z < d − 1 d − 1 < z < (d − 1)2



Correlator dual to the scalar �eld at small w , k

I Lorentz-invariance emerges up to local terms.
I Massless case:

〈Oφ(k ,w),Oφ(−k ,−w)〉 ={
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I Massive case:

〈O(k ,w , u)O(−k ,−w , u)〉 ∝ Γ(−ν + 1)(
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Correlator dual to the scalar �eld at large w , k

I Lorentz-invariance does not emerge;

I at z = 2 behavior is the same as in Lifshitz:

〈Oφ(k ,w),Oφ(−k ,−w)〉 = wγG (
k2

w
); γ =

{
2, d = 3

5/2, d = 4

I Covariance under anisotropic scale transformations:

k → k/λ,

w → w/λ2,



The brane problem at small w , k

I Let us assume that the space is bounded by the brane at large

u = u0. Therefore the dual theory contains particles and their

w , k correspond to the modes of the scalar �eld. Do they obey

the Loretz-symmetry?

I At small w , k Lorentz-invariance emerges if Dirichlet boundary

conditions (at u = 0) are satis�ed. The equation for w , k
(non-zero modes only) in the case d = 3:
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I In the case of small w , k and Neumann boundary conditions

Lorentz-invariance does not emerge.
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The brane problem at large w and small k

I At large w , small k and Dirichlet boundary conditions the

dispersion relation is:
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I We see low-energy form of Lorentz-invariance



Conclusions

I We studied the solutions for gravitational and �eld equations

describing space interpolating between AdS and Lifshitz at

general d , z , found the conditions of stability of the solutions;

I explored correlator of scalar �eld in this space:
I At small w , k the correlator is Lorentz-invariant,
I at large w , k the correlator is the same as in pure Lifshitz,

I If the space is bounded by the brane on the AdS side, the
excitations are Lorentz-invariant at

I small w , k ;
I large w and small k .

I future directions:
I generalization for the case of gauge �eld,
I search for massless Lorentz-invariant mode.


