Cabling Procedure for the HOMFLY Polynomials

Andrey Morozov
In collaboration with A. Anokhina

ITEP, MSU, Moscow

1 July, 2013, Erice
Current knowledge of the gauge field theories

- 2-dimensional theories - e.g. CFT
- 4-dimensional theories - e.g. SW
Current knowledge of the gauge field theories

- 2-dimensional theories - e.g. CFT
- 4-dimensional theories - e.g. SW

AdS/CFT
AGT
Current knowledge of the gauge field theories

- 2-dimensional theories - e.g. CFT
- 3-dimensional theories - Chern-Simons theory
- 4-dimensional theories - e.g. SW

AdS/CFT
AGT

In the last few years many connections between CS and the other theories such as Integrable Systems, Topological String Theories and Conformal Field Theories has been found.
Current knowledge of the gauge field theories

- 2-dimensional theories - e.g. CFT
- 3-dimensional theories - **Chern-Simons theory**
- 4-dimensional theories - e.g. SW
- 5-dimensional theories

AdS/CFT
AGT
5d AGT

In the last few years many connections between CS and the other theories such as Integrable Systems, Topological String Theories and Conformal Field Theories has been found.
Current knowledge of the gauge field theories

- 2-dimensional theories - e.g. CFT
- 3-dimensional theories - **Chern-Simons theory**
- 4-dimensional theories - e.g. SW
- 5-dimensional theories

In the last few years many connections between CS and the other theories such as **Integrable Systems, Topological Strings Theories** and **Conformal Field Theories** has been found.
Chern-Simons theory

- 3-dimensional topological gauge theory - Chern-Simons theory
- \(S_{CS} = \frac{k}{4\pi} \int d^3x \ (\text{Ad}A + \frac{2}{3}A \wedge A \wedge A) \)

Wilson-loop averages:
\[
\langle W^K_Q \rangle = \left\langle \text{tr}_Q \text{Pexp} \left(\oint_{\mathcal{K}} A dx \right) \right\rangle_{CS(N,q)}
\]

- \(Q \) is a representation of the group \(SU(N) \)
- \(\mathcal{K} \) is a contour (i.e. a knot)
- \(q = \exp\left(\frac{2\pi i}{k+N} \right) \)

Andrey Morozov (ITEP, MSU, Moscow)
3-dimensional topological gauge theory - Chern-Simons theory

\[S_{CS} = \frac{k}{4\pi} \int d^3x \left(\text{Ad}A + \frac{2}{3}A \wedge A \wedge A \right) \]

Wilson-loop averages:

\[\langle W_{Q}^{\mathcal{K}} \rangle = \left\langle \text{tr}_{Q} P \exp \left(\oint_{\mathcal{K}} \text{Ad}x \right) \right\rangle_{CS(N,q)} \]

- \(Q \) is a representation of the group \(SU(N) \)
- \(\mathcal{K} \) is a contour (i.e. a knot)
- \(q = \exp \left(\frac{2\pi i}{k+N} \right) \)

In 1989 E. Witten\(^1\) suggested that the Wilson-loop averages of the CS theory are equal to the knot polynomials:

\[H_{Q}^{\mathcal{K}} = \langle W_{Q}^{\mathcal{K}} \rangle_{CS(N,q)} \]

\(^1\)E. Witten, Comm. Math. Phys. \textbf{121} (1989) 351
HOMFLY polynomials

HOMFLY polynomials are topological invariants and the Laurent polynomials in variables A and q.

The fundamental HOMFLY can be evaluated using the skein relations

\[A \begin{array}{c} \text{K} \\ \text{K} \end{array} - A^{-1} \begin{array}{c} \text{K} \\ \text{K}' \end{array} = (q - q^{-1}) \begin{array}{c} \text{K}'' \end{array} \]

\[A \begin{array}{c} \text{H} \hfill \text{K} \\ \text{H} \hfill \text{K}' \end{array} - A^{-1} \begin{array}{c} \text{H} \hfill \text{K} \\ \text{H} \hfill \text{K}' \end{array} = (q - q^{-1}) \begin{array}{c} \text{H} \hfill \text{K}'' \end{array} \]

In the Chern-Simons theory $q = e^{\frac{2\pi i}{k+N}}$ and $A = q^N$
Color in the knot theory

How can the color (i.e. representation Q) be introduced?

\[
\begin{align*}
JJ - q^6 - q^2 + 1 & \quad A^2 q^4 JJ \\
& + q^{-4} A^{-6} JJ \\
& = q^6 - q^4 + 1 A^4 q^6 \\
\end{align*}
\]
Color in the knot theory

How can the color (i.e. representation Q) be introduced?

- Colored skein relations

For the representation [2]:

\[
\begin{align*}
&- \frac{q^6 - q^2 + 1}{A^2 q^4} + q^{-4} A^{-6} = \frac{q^6 - q^4 + 1}{A^4 q^6}
\end{align*}
\]
Color in the knot theory

How can the color (i.e. representation Q) be introduced?

- Colored skein relations

 For the representation $[2]$:

 \[
 - \frac{q^6 - q^2 + 1}{A^2 q^4} + q^{-4} A^{-6} = \frac{q^6 - q^4 + 1}{A^4 q^6}
 \]

- Cabling procedure

 To define it we will first provide more details about the other methods of evaluating the knot polynomials.
Braid representation

To describe the knot it is convenient to use its braid representation:

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{braid_representation.png}
\end{array}
\]

Then in the Reshetikhin-Turaev formalism\(^2\) for each crossing the \(R\)-matrix should be inserted and the answer for the HOMFLY polynomials then is given by the trace over the product of all the \(R\)-matrices:

\[
H_Q^K = \text{Tr}_{Q^\otimes 2} \prod_i R_i
\]

Current knowledge about the \mathcal{R}-matrices

\mathcal{R}-matrices depend on many parameters:

- Representations of the group $SU(N)$ placed on the different strands
- Number of the strands in the braid
- The pair of the crossing strands

The exact matrix form has been constructed for any \mathcal{R}-matrix in the fundamental representation.
The main idea behind the cabling procedure is that

$$H_{Q}^{K \otimes m} = H_{Q}^{K^{m}}$$

K^{m} is a knot K where the strand is replaced with the m parallel strands:
Cabling procedure

Projectors

The cabling of the knot gives the answer in the reducible representation $Q \otimes^m$ therefore to find the answer in some other irreducible or reducible representation T the operator called projector $P_T^{Q \otimes^m}$ should be constructed.

These projectors can be described as a combination of the added crossings between the m strands in the cable.

In other words the knot polynomials (Wilson-loop average) in the representation T can be represented as a linear combination of the knot polynomials in the fundamental representations but for the knots with $|T|$ times more strands.
Answers for the projectors

The general answer for the projectors is known in the matrix form.

The answer which describes the connections between the colored and the fundamental knot polynomials is known only in the several simplest examples.

\[
P_2 = -\frac{R_1 + q^{-1}}{q + q^{-1}} \quad P_{11} = \frac{R_1 - q}{q + q^{-1}}
\]

There is also a suggestion of the recursive procedure which in principle should be able to construct any projector.
Conclusion

- The exact matrix form of the R-matrices in the fundamental representation has been constructed. This allows in principle to find the HOMFLY polynomial of any knot or link in the fundamental representation.

- The matrix form of the projectors has been constructed. This allows in principle to find the HOMFLY polynomial of any knot or link in any representation.

- The method to find the projectors which describes the connections between the fundamental and the colored HOMFLY polynomials has been suggested.

The collected data should be analyzed to find the properties of the Wilson averages and the connections between the different knot polynomials.
THANK YOU FOR YOUR ATTENTION!
Yang-Baxter Equation

HOMFLY polynomials satisfy three Reidemeister moves

The third Reidemeister move is the Yang-Baxter equation which solutions are R-matrices.
Character Expansion

The eigenvectors of these \mathcal{R}-matrices with the different eigenvalues correspond to the different irreducible representations from the decomposition of the $Q^\otimes m$. Thus instead of using the \mathcal{R}-matrices acting on the vectors one could use one for the irreducible representations. Then the answer for the Wilson-loop average (Knot polynomial) will be an expansion into the Schur-functions (characters of different irreducible representations of the studied group). The coefficients of this expansion are not topologically invariant, but the whole sums are:

$$H^K_Q(A|q) = \langle W^K_Q \rangle = \sum_T h^T_Q S^*_T(A, q)$$
For the braid with m strands there are $m - 1$ different \mathcal{R} matrices corresponding to the crossings between different pairs of strands.

\[
\mathcal{R}_1 = \mathcal{R}_0 \otimes \mathcal{I} \quad \mathcal{R}_2 = \mathcal{I} \otimes \mathcal{R}_0
\]

All of them have the same eigenvalues but they are not the same ones.
Diagonal R-matrices

For the crossing between representations T_1 and T_2 the eigenvalues are described by the irreducible representations in the decomposition $Q_i \vdash T_1 \otimes T_2$.

$$|\lambda_i| = q^{\kappa_i}, \quad \kappa_i = \frac{1}{2} \sum_{\{i,j\}\in Q_i} (i - j)$$

If there are more than two strands then the following decomposition should be studied:

$$T_1 \otimes T_2 \otimes .. \otimes T_m = (\sum_i Q_i) \otimes .. \otimes T_m = \sum_j \bar{Q}_j$$

The eigenvalues for the \bar{Q}_j are the same ones as for the corresponding Q_i.
Non-diagonal R-matrices

The general formula is known only for the fundamental representations. The matrix is block-diagonal with blocks 1×1 equal to q or $-q^{-1}$ and 2×2 equal to the

$$b_j = \begin{pmatrix}
-\frac{1}{q^j[j]_q} & \sqrt{[j+1]_q[j-1]_q} \\
\sqrt{[j+1]_q[j-1]_q} & \frac{q^j}{[j]_q}
\end{pmatrix}$$

Where $[j]_q$ is the quantum j: $[j]_q \equiv \frac{q^j-q^{-j}}{q-q^{-1}}$.

Then the paths on the tree of the diagrams should be considered.
Tree of the diagrams
Non-diagonal R-matrices

R_{k-1} is described by the level k in the tree. The paths can go as singlets or doublets. In doublets two paths differ only on the level k.

If the length of a hook, connecting the two added cells is equal to j then block b_{j-1} should be used.
Non-diagonal R-matrices

$$R_{3|311} = \begin{pmatrix}
1 & \sqrt{2}_q [4]_q \\
- \frac{1}{[3]_q q^3} & \frac{\sqrt{[2]_q [4]_q}}{[3]_q} \\
\sqrt{[2]_q [4]_q} & \frac{q^3}{[3]_q}
\end{pmatrix}$$
Path Projectors

Projectors can be constructed in the same manner as the \mathcal{R}-matrices. For the P_Q in the tree only the paths which pass through the Q should remain.

\[
P_{2\otimes 1^3|311} = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
Representation tree

```
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 11 2 11 2 11 2 11 2 11 2 11 2 11
3 21 21 3 21 21 3 21 21 3 21 21 3 21 21
31 22 31 22 31 22 31 22 31 22 31 22 31 22
32 311 221 321
```

Andrey Morozov (ITEP, MSU, Moscow)
Characteristic equations

The definition using the paths is very constructive but does not provide the connections between the colored HOMFLY and the fundamental ones. To find these connections the definition which uses the \(R \)-matrices should be constructed.

This can be done using the operator properties of the \(R \)-matrices:

The projector on eigenvalue \(\lambda_i \) of the operator with the characteristic equation \(\prod_{i=1}^{n} (\hat{R} - \lambda_i) = 0 \) is

\[
\hat{P}_{\lambda_j} = \prod_{i \neq j} \frac{\hat{R} - \lambda_i}{\lambda_j - \lambda_i}
\]
Characteristic equations for the R-matrices

For the fundamental R-matrices the characteristic equation is known from the mathematics and is described by the skein relations:

$$R - R^{-1} - (q - q^{-1}) = (R - q) \left(R + \frac{1}{q} \right) = 0$$
Colored skein relations

From the characteristic equation the analogue of the skein relations for the colored \mathcal{R}-matrices can be constructed though it is not very useful:

\[(\mathcal{R}_{2\otimes 2} - q^6) \left(\mathcal{R}_{2\otimes 2} + q^2 \right) \left(\mathcal{R}_{2\otimes 2} - 1 \right) = 0\]

\[\left(q^8 - q^6 + q^2 \right) \left(q^8 \right) = \left(q^6 - q^2 + 1 \right)\]

From the characteristic equation the projectors can be constructed

\[(R - q)\left(R + \frac{1}{q}\right) = 0\]

\[
\downarrow
\]

\[P_2 = -\frac{R_1 + q^{-1}}{q + q^{-1}} \quad P_{11} = \frac{R_1 - q}{q + q^{-1}}\]
The projectors on $[21]$

There are also additional characteristic equations for the combinations of the R-matrices:

$$(R_1 - R_2) \left((R_1 - R_2)^2 - (q^2 + 1 + q^{-2}) \right) = 0$$

Together with the characteristic equations on each of the R-matrices this gives

$$P_{21} = \frac{(R_1 - R_2)^2}{q^2 + 1 + q^{-2}}$$
Recursive formula for the projector

\[B_{|Q|} = \left(\prod_{i=1}^{|Q|} R_i \right) \left(\prod_{j=1}^{R_{|Q|+1} - j} R_{|Q|+1} \right) \]

The projector on the representation \(Q \) made from \(T \) with the addition of the cell \(\{k, l\} \) is equal to

\[P_{Q = T \cup (k, l)} = \sum \prod_{(i, j) \neq (k, l)} \frac{B_{|Q|} - q^{2j-2i}}{q^{2l-2k} - q^{2j-2i}} P_T \]

The product is over all possible additions of cells \(\{i, j\} \).