Making the Most of MET

Chris Wymant1,2

1301.0345 & Phys.Rev. D

with Michael Spannowsky1

1IPPP, Durham, UK

2LPT Orsay, France

Erice, June 2013
Prelude

Q: How can we discover a new particle X in incoming particles

\[
\text{whatever} + X
\]

\[
\text{whatever} + 1 + 2 + \ldots + i + \ldots
\]

Cut and count: better:

\[
\text{mass}(\sum_i p_i^\mu)
\]
Missing Momenta

One or two invisible particles χ leaving the detector:

<table>
<thead>
<tr>
<th></th>
<th>lepton collider</th>
<th>hadron collider</th>
</tr>
</thead>
<tbody>
<tr>
<td>1χ</td>
<td>3 unknowns: p_χ</td>
<td>3 unknowns: p_χ</td>
</tr>
<tr>
<td></td>
<td>3 measurements: p</td>
<td>2 measurements: p_T</td>
</tr>
<tr>
<td>2χ</td>
<td>6 unknowns: $p_{\chi a}, p_{\chi b}$</td>
<td>6 unknowns: $p_{\chi a}, p_{\chi b}$</td>
</tr>
<tr>
<td></td>
<td>3 measurements: p</td>
<td>2 measurements: p_T</td>
</tr>
</tbody>
</table>

(assuming m_χ is known).

2χ at hadron colliders – e.g. \mathbb{Z}_2-symmetric dark matter at the LHC.
One Decaying Particle At A Hadron Collider: m_T

\[
m_W^2 = (E_l + E_\nu)^2 - (p_l + p_\nu)^2
\]
\[
= m_l^2 + m_\nu^2 + 2(E_{T,l}E_{T,\nu} \cosh(\Delta y_{l\nu}) - p_{T,l} \cdot p_{T,\nu})
\]
\[
m_T^2 \equiv (E_{T,l} + E_{T,\nu})^2 - (p_{T,l} + p_{T,\nu})^2
\]
\[
= m_l^2 + m_\nu^2 + 2(E_{T,l}E_{T,\nu} - p_{T,l} \cdot p_{T,\nu})
\]
\[
\therefore m_T \leq m_W
\]

\[
m_T^2 \equiv (E_{T,\text{vis}} + E_{T,\text{invis}})^2 - (p_{T,\text{vis}} + p_{T,\text{invis}})^2
\]
\[
\therefore m_T \leq m_X
\]

* must approximate $m_{\text{invis}} \approx 0$
Two Decaying Particles At A *Hadron* Collider: M_{T2}

\[
\begin{align*}
\max & \{ m_T^2(p_T,l^+, p_T,\tilde{N}_{1,a}) , \\
& m_T^2(p_T,l^-, p_T,\tilde{N}_{1,b}) \} \leq m_i^2,
\end{align*}
\]

but we don’t know the decomposition

\[
p_T = p_T,\tilde{N}_{1,a} + p_T,\tilde{N}_{1,a}
\]

\[\implies\] try all decompositions & take the most conservative:

\[
M_{T2}^2 \equiv \min_{p_1 + p_2 = p_T} \left(\max \{ m_T^2(p_T,l^+, p_1) , m_T^2(p_T,l^-, p_2) \} \right) \leq m_i^2
\]

9906349 Lester, Summers
The Massless Collinear Approximation

Aim for $\text{mass}(\sum_i p_i^\mu)$.
To constrain the kinematics we must have a prejudice about the directions of χ_a and χ_b.
e.g. both are parallel to visible particles, due to boosted decays.

\rightarrow unique decomposition $p_T = p_{T,\chi_a} + p_{T,\chi_b}$
\rightarrow unique $p_{z,\chi_a}, p_{z,\chi_b}$
\rightarrow if χ is ‘light’, set $m_\chi = 0$

In the transverse plane:
\mathbf{p}_T (which is $p_{T,\chi_a} + p_{T,\chi_b}$)
Two visible particles \parallel to χ_a and χ_b
Other stuff

c.f. $H \rightarrow \tau\tau$ by Plehn, Rainwater, Zeppenfeld ‘99
A Pair Of Boosted Semi-invisible Decays

e.g. $2\tilde{q} \rightarrow 2q + 2\tilde{N}_1$; \tilde{N}_1 could decay to

- a gravitino \tilde{G}

1110.6444 Kats, Meade, Reece, Shih

- a pseudo-goldstino \tilde{G}'

1002.1967 Cheung, Nomura, Thaler,
1112.5058 Argurio et al

- a singlino \tilde{S}

e.g. 1202.5244 Das, Ellwanger, Teixeira

- a new photino’ $\tilde{\gamma}'$

e.g. 1206.0751 Baryakhtar, Craig, Van Tilburg
Aforementioned steps reconstruct (massless) $p_{\tilde{N}_{1,a},b}^{\mu}$.

How to pair $\tilde{N}_{1,a}, \tilde{N}_{1,b}$ with the ‘correct’ j_a, j_b?

criterion α: $- \left(p_{\tilde{N}_{1,a}} \cdot p_{j_a} + p_{\tilde{N}_{1,b}} \cdot p_{j_b} \right)$ maximal

criterion β: $\left| (p_{\tilde{N}_{1,a}}^\mu + p_{j_a}^\mu)^2 - (p_{\tilde{N}_{1,b}}^\mu + p_{j_b}^\mu)^2 \right|$ minimal
Mass Reconstruction

\[M_{\text{rec};a,b}^2 = (p_{\tilde{\nu}_{1;a,b}}^{\mu} + p_{\tilde{\nu}_{j;a,b}}^{\mu})^2 \]

\[pp \to 2\tilde{\nu} \to 2q + 2(\tilde{\nu}_1) \to 2q + 2(\tilde{G} + \gamma) \]

Herwig++, MadGraph-PYTHIA-PGS

\[m_{\tilde{\nu}} = 1.2 \text{ TeV} \]
\[m_{\tilde{\nu}_1} = 100 \text{ GeV} \]
\[m_{\tilde{G}} = 1 \text{ eV} \]
Accuracy

\[\uparrow \text{sample of 100} \rightarrow \text{one } M \text{ value} \downarrow \]
many signal events \[\rightarrow \text{sample of 100} \rightarrow \text{one } M \text{ value} \rightarrow P(M)dM \]
\[\downarrow \text{sample of 100} \rightarrow \text{one } M \text{ value} \uparrow \]

\[\therefore \text{root-mean-square}(M - M_{\text{true}}) = 5\% \ M_{\text{true}} \]
from 100 events

c.f. (with large pinch of salt!) ATLAS Technical Design Report, squark mass from kinks:
3% after one \textbf{million} signal events
Dependence On Boostedness

\[\frac{1}{\sigma} \frac{d\sigma}{d(\Delta R)} \]

\[\Delta R(\gamma \tilde{G}) \]

\[\frac{1}{\sigma} \frac{d\sigma}{dM_{\text{rec}}} \]

\[M_{\text{rec}} \text{[TeV]} \]

\[m_{\tilde{q}} = 1.2 \text{ TeV}, \quad m_{\tilde{N}_1} = 100, 200, 400 \text{ GeV} \]
Non-degenerate Squarks; Gluinos

\[m_{\tilde{q}} = 1.1, 1.4 \text{ TeV} \]
smaller mass,
larger mass

\[m_{\tilde{g}} = 1.2 \text{ TeV} \]
Herwig++,
MG5–PYTHIA–PGS
Other Generalisations

- vis_1 = more than one particle,
- vis_2 = more than one particle,
- $\text{vis}_1 = \text{vis}_2$,
- 3χ,

see 1301.0345.
Theorists: see if your model has boosted semi-invisible decays, tell experimentalists these final states are motivated.

Experimentalists: search for resonances thusly in any clean final state – \(\text{vis}_1,2 = l, \gamma, j; \text{vis}_1,2 \neq b, t \) if unexpected bumps? PGS/HepMC output → peak-finding code at www.ippp.dur.ac.uk/~hndv85/ (or Google me)