Supergravity as the square of Super Yang-Mills
A geometric approach

Silvia Nagy

Imperial College London,
based on work done in collaboration with:
L. Borsten, M. J. Duff and L. J. Hughes
arXiv:1301.4176

Erice, July 1, 2013
Clues for an unexpected relationship

A (super)quick intro to Supergravity and Super Yang-Mills

The Scalar cosets of Supergravity
N=1,2,4,8 Super Yang Mills over the division algebras

The Magic Square

Projective planes
Isometries of the projective planes
The Magic Square

A Magic Square of Supergravities

Tensoring the Multiplets
MAGIC!

Magic pyramid

Conclusions and future work
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 - The Scalar cosets of Supergravity
 - N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 - Projective planes
 - Isometries of the projective planes
 - The Magic Square

4. A Magic Square of Supergravities
 - Tensoring the Multiplets
 - MAGIC!

5. Magic pyramid

6. Conclusions and future work
This strange connection already found in...

Scattering Amplitudes
KLT Relations in String Theory
Supergravity Multiplets from Yang-Mills multiplets in 10d
This strange connection already found in...

- Scattering Amplitudes
This strange connection already found in...

- Scattering Amplitudes
- KLT Relations in String Theory
This strange connection already found in...

- Scattering Amplitudes
- KLT Relations in String Theory
- Supergravity Multiplets from Yang-Mills multiplets in 10d
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 - The Scalar cosets of Supergravity
 - N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 - Projective planes
 - Isometries of the projective planes
 - The Magic Square

4. A Magic Square of Supergravities
 - Tensoring the Multiplets
 - MAGIC!

5. Magic pyramid

6. Conclusions and future work
Supergravity

as the square of Super Yang-Mills A geometric approach

Silvia Nagy

Outline

Clues for an unexpected relationship

A (super)quick intro to Supergravity and Super Yang-Mills

The Scalar cosets of Supergravity

N=1,2,4,8 Super Yang Mills over the division algebras

The Magic Square

A Magic Square of Supergravities

Magic pyramid

Conclusions and future work
Supergravity

• Low energy limit of string theory
Supergravity

Low energy limit of string theory

General relativity + supersymmetry (local susy parameter)
Supergravity

Silvia Nagy

Outline

Clues for an unexpected relationship

A (super)quick intro to Supergravity and Super Yang-Mills

- The Scalar cosets of Supergravity
- N=1,2,4,8 Super Yang Mills over the division algebras

The Magic Square

A Magic Square of Supergravities

Magic pyramid

Conclusions and future work

- Low energy limit of string theory
- General relativity + supersymmetry (local susy parameter)
- Field content- supergravity multiplets
Supergravity

- Low energy limit of string theory
- General relativity + supersymmetry (local susy parameter).
- Field content- supergravity multiplets.
- Characterised by scalar coset groups.
What are the scalar cosets?

Outline

Clues for an unexpected relationship

A (super)quick intro to Supergravity and Super Yang-Mills

The Scalar cosets of Supergravity

N=1,2,4,8 Super Yang Mills over the division algebras

The Magic Square

A Magic Square of Supergravities

Magic pyramid

Conclusions and future work

What are the scalar cosets?

Symmetries of theories obtained by reduction on various manifolds

Study symmetries of scalars

General form of transformation:

\[V' = O V \Lambda \]

\(V \) obtained by exponentiating scalars with Cartan Generator + positive root generators

\(\Lambda \) is the global symmetry transformation (G group)

\(O \) is the compensating transformation

Example: 2 torus reduction gives the scalar coset \(SL(2) \) \(SO(2) \)

Scalars determine symmetries of all fields!
What are the scalar cosets?

- Symmetries of theories obtained by reduction on various manifolds
What are the scalar cosets?

- Symmetries of theories obtained by reduction on various manifolds
- Study symmetries of scalars
What are the scalar cosets?

- Symmetries of theories obtained by reduction on various manifolds
- Study symmetries of scalars
- General form of transformation:

\[\mathcal{V}' = \mathcal{O} \mathcal{V} \Lambda \]

- \(\mathcal{V} \) obtained by exponentiating scalars with Cartan Generator + positive root generators
- \(\Lambda \) is the global symmetry transformation (G group)
- \(\mathcal{O} \) is the compensating transformation
What are the scalar cosets?

- Symmetries of theories obtained by reduction on various manifolds
- Study symmetries of scalars
- General form of transformation:
 \[V' = O V \Lambda \]

- \(V \) obtained by exponentiating scalars with Cartan Generator + positive root generators
- \(\Lambda \) is the global symmetry transformation (G group)
- \(O \) is the compensating transformation
- Example: 2 torus reduction gives the scalar coset \(\frac{SL(2)}{SO(2)} \)
What are the scalar cosets?

- Symmetries of theories obtained by reduction on various manifolds
- Study symmetries of scalars
- General form of transformation:

\[V' = O V \Lambda \]

- \(V \) obtained by exponentiating scalars with Cartan Generator + positive root generators
- \(\Lambda \) is the global symmetry transformation (G group)
- \(O \) is the compensating transformation
- Example: 2 torus reduction gives the scalar coset \(\frac{SL(2)}{SO(2)} \)
- Scalars determine symmetries of all fields!
Super Yang-Mills

\[\mathcal{L} = -\frac{1}{4} \text{Tr}(F_{\mu\nu} F^{\mu\nu}) - \frac{i}{2} \text{Tr}(\bar{\lambda}, \gamma^\mu D_\mu \lambda) \]

\begin{itemize}
 \item \(\mathcal{N} = 1 \) Super YM Lagrangian:
\end{itemize}
Super Yang-Mills

- $\mathcal{N} = 1$ Super YM Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \text{Tr}(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} \text{Tr}(\bar{\lambda}, \gamma^\mu D_\mu \lambda)$$

- SYM multiplets
Super Yang-Mills

- $\mathcal{N} = 1$ Super YM Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \text{Tr}(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} \text{Tr}(\bar{\lambda}, \gamma^{\mu} D_{\mu} \lambda)$$

- SYM multiplets
- SYM theories are characterised by the R-symmetry, which describes transformations of different supercharges into each other.
Supergravity as the square of Super Yang-Mills A geometric approach

Silvia Nagy

Outline

Clues for an unexpected relationship

A (super)quick intro to Supergravity and Super Yang-Mills

The Scalar cosets of Supergravity

$\mathcal{N} = 1, 2, 4, 8$ Super Yang Mills over the division algebras

The Magic Square

A Magic Square of Supergravities

Magic pyramid

Conclusions and future work

In 3 dimensions, we can write the Lagrangian:

$$L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} D_{\mu} \phi^* A_{D \mu} \phi + i \bar{\lambda}_A \gamma^\mu D_{\mu} \lambda_A - \frac{1}{4} g^2 f_{BC \lambda} f_{DE \mu} \langle \phi^B | \phi^D \rangle \langle \phi^C | \phi^E \rangle + i g f_{BC \lambda} (\bar{\lambda}_A \phi^B \lambda_C - \bar{\lambda}_A (\phi^* B \lambda_C))$$
\[N = 1, 2, 4, 8 \] Super Yang Mills over the division algebras

In 3 dimensions, we can write the Lagrangian:

\[\mathcal{L} = - \frac{1}{4} F^A_{\mu \nu} F^{A \mu \nu} - \frac{1}{2} D_\mu \phi^A D^\mu \phi^A + i \bar{\lambda}^A \gamma^\mu D_\mu \lambda^A \\
- \frac{1}{4} g^2 f_{BC}^A f_{DE}^A \langle \phi^B | \phi^D \rangle \langle \phi^C | \phi^E \rangle \\
+ \frac{i}{2} g f_{BC}^A \left((\bar{\lambda}^A \phi^B) \lambda^C - \bar{\lambda}^A (\phi^B \lambda^C) \right) \]
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 The Scalar cosets of Supergravity
 N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 Projective planes
 Isometries of the projective planes
 The Magic Square

4. A Magic Square of Supergravities
 Tensoring the Multiplets
 MAGIC!

5. Magic pyramid

6. Conclusions and future work
The projective plane

- A set of points and lines together with a relation between them, satisfying the following axioms:
 - For any two distinct points, there is a unique line on which they both lie.
 - For any two distinct lines, there is a unique point which lies on both of them.
 - There exist four points, no three of which lie on the same line.
 - The terms point and line are interchangeable in the above definition.
Supergravity as the square of Super Yang-Mills A geometric approach
Silvia Nagy

Outline
Clues for an unexpected relationship
A (super)quick intro to Supergravity and Super Yang-Mills
The Magic Square

Projective planes
 Isometries of the projective planes
 The Magic Square

A Magic Square of Supergravities

Magic pyramid
Conclusions and future work

The Fano Plane
A more intuitive definition

For any field F, the projective plane FP^2 is the set of equivalence classes of non-zero points in F^3, where the equivalence relation is given by:

$$(x, y, z) \equiv (rx, ry, rz)$$

(4)
Supergravity as the square of Super Yang-Mills: A geometric approach

Silvia Nagy

Outline
Clues for an unexpected relationship
A (super) quick intro to Supergravity and Super Yang-Mills
The Magic Square
Projective planes
Isometries of the projective planes
The Magic Square
A Magic Square of Supergravities
Magic pyramid
Conclusions and future work

The real projective plane
Some simple Lie Algebras

- \(\mathfrak{so}(n) = \{x \in \mathbb{R}[n] : x^\dagger = -x, \text{tr}(x) = 0\} \)
Some simple Lie Algebras

- $so(n) = \{ x \in \mathbb{R}[n] : x^\dagger = -x, \text{tr}(x) = 0 \}$
- $su(n) = \{ x \in \mathbb{C}[n] : x^\dagger = -x, \text{tr}(x) = 0 \}$
Some simple Lie Algebras

- $\mathfrak{so}(n) = \{ x \in \mathbb{R}[n] : x^\dagger = -x, \text{tr}(x) = 0 \}$
- $\mathfrak{su}(n) = \{ x \in \mathbb{C}[n] : x^\dagger = -x, \text{tr}(x) = 0 \}$
- $\mathfrak{sp}(n) = \{ x \in \mathbb{H}[n] : x^\dagger = -x \}$
Isometries of projective planes
Isometries of projective planes

- \(\text{isom}(\mathbb{R}P^2) \cong \text{so}(3) \)
Isometries of projective planes

- $\text{isom}(\mathbb{RP}^2) \cong so(3)$
- $\text{isom}(\mathbb{CP}^2) \cong su(3)$
Isometries of projective planes

- $\text{isom}(\mathbb{R}P^2) \cong \text{so}(3)$
- $\text{isom}(\mathbb{C}P^2) \cong \text{su}(3)$
- $\text{isom}(\mathbb{H}P^2) \cong \text{sp}(3)$
Isometries of projective planes

\begin{itemize}
 \item \text{isom}(\mathbb{RP}^2) \cong so(3)
 \item \text{isom}(\mathbb{CP}^2) \cong su(3)
 \item \text{isom}(\mathbb{HP}^2) \cong sp(3)
 \item \text{isom}(\mathbb{OP}^2) \cong f_4
\end{itemize}
What about the exceptional groups?
What about the exceptional groups?

- \(\text{isom}(\mathbb{C} \otimes \mathbb{O} \mathbb{P}^2) \cong e_6 \)
What about the exceptional groups?

- $\text{isom}(\mathbb{C} \otimes \mathbb{O}) \mathbb{P}^2 \cong e_6$
- $\text{isom}(\mathbb{H} \otimes \mathbb{O}) \mathbb{P}^2 \cong e_7$
What about the exceptional groups?

- \(\text{isom}((\mathbb{C} \otimes \mathbb{O}) \mathbb{P}^2) \cong e_6\)
- \(\text{isom}((\mathbb{H} \otimes \mathbb{O}) \mathbb{P}^2) \cong e_7\)
- \(\text{isom}((\mathbb{O} \otimes \mathbb{O}) \mathbb{P}^2) \cong e_8\)
The magic square

- Define the magic square by:

\[M(A_1, A_2) = isom((A_1 \otimes A_2)P^2) \] (5)
The magic square

- Define the magic square by:

\[M(A_1, A_2) = \text{isom}((A_1 \otimes A_2) \mathbb{P}^2) \]

<table>
<thead>
<tr>
<th>(A_L / A_R)</th>
<th>(\mathbb{R})</th>
<th>(\mathbb{C})</th>
<th>(\mathbb{H})</th>
<th>(\mathbb{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R})</td>
<td>(\text{SL}(2, \mathbb{R}))</td>
<td>(\text{SU}(2, 1))</td>
<td>(\text{USp}(4, 2))</td>
<td>(F_4(-20))</td>
</tr>
<tr>
<td>(\mathbb{C})</td>
<td>(\text{SU}(2, 1))</td>
<td>(\text{SU}(2, 1) \times \text{SU}(2, 1))</td>
<td>(\text{SU}(4, 2))</td>
<td>(E_6(-14))</td>
</tr>
<tr>
<td>(\mathbb{H})</td>
<td>(\text{USp}(4, 2))</td>
<td>(\text{SU}(4, 2))</td>
<td>(\text{SO}(8, 4))</td>
<td>(E_7(-5))</td>
</tr>
<tr>
<td>(\mathbb{O})</td>
<td>(F_4(-20))</td>
<td>(E_6(-14))</td>
<td>(E_7(-5))</td>
<td>(E_8(8))</td>
</tr>
</tbody>
</table>

Table: Magic square
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 The Scalar cosets of Supergravity
 N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 Projective planes
 Isometries of the projective planes
 The Magic Square

4. A Magic Square of Supergravities
 Tensoring the Multiplets
 MAGIC!

5. Magic pyramid

6. Conclusions and future work
Tensoring the Multiplets

- In 3 dimensions, we tensor together left and right multiplets of Super YM, for $\mathcal{N} = 1, 2, 4, 8$
Tensoring the Multiplets

- In 3 dimensions, we tensor together left and right multiplets of Super YM, for $\mathcal{N} = 1, 2, 4, 8$

$$\mathcal{N}_L(SYM) + \mathcal{N}_R(SYM) = \mathcal{N}_{SuGra}$$
Tensoring the Multiplets

- In 3 dimensions, we tensor together left and right multiplets of Super YM, for $\mathcal{N} = 1, 2, 4, 8$
 \[\mathcal{N}_L(SYM) + \mathcal{N}_R(SYM) = \mathcal{N}_{SuGra} \] (6)

- We get the supergravity magic square:
Magic Square of Supergravities

<table>
<thead>
<tr>
<th>A_L/A_R</th>
<th>R</th>
<th>C</th>
<th>H</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>SL(2, R)</td>
<td>SU(2, 1)</td>
<td>USp(4, 2)</td>
<td>$F_4(-20)$</td>
</tr>
<tr>
<td>C</td>
<td>SU(2, 1)</td>
<td>SU(2, 1) \times SU(2, 1)</td>
<td>SU(4, 2)</td>
<td>$E_6(-14)$</td>
</tr>
<tr>
<td>H</td>
<td>USp(4, 2)</td>
<td>SU(4, 2)</td>
<td>SO(8, 4)</td>
<td>$E_7(-5)$</td>
</tr>
<tr>
<td>O</td>
<td>$F_4(-20)$</td>
<td>$E_6(-14)$</td>
<td>$E_7(-5)$</td>
<td>$E_8(8)$</td>
</tr>
</tbody>
</table>

Table: Magic square
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 - The Scalar cosets of Supergravity
 - N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 - Projective planes
 - Isometries of the projective planes
 - The Magic Square

4. A Magic Square of Supergravities
 - Tensoring the Multiplets
 - MAGIC!

5. Magic pyramid

6. Conclusions and future work
SYM in various dimensions

- Remember the lagrangian:

\[\mathcal{L} = -\frac{1}{4} Tr(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} Tr(\bar{\lambda}, \gamma^\mu D_\mu \lambda) \quad (7) \]
SYM in various dimensions

- Remember the lagrangian:

\[\mathcal{L} = - \frac{1}{4} Tr(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} Tr(\bar{\lambda}, \gamma^{\mu} D_{\mu} \lambda) \] (7)

- We want its SUSY variation to vanish
SYM in various dimensions

- Remember the lagrangian:

\[\mathcal{L} = -\frac{1}{4} \text{Tr}(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} \text{Tr}(\bar{\lambda}, \gamma^{\mu} D_{\mu} \lambda) \]

(7)

- We want its SUSY variation to vanish
- We get a term of the form:

\[\text{Tr}(\lambda, \gamma^{\mu} [(\epsilon \gamma^\mu \lambda), \lambda]) \]

(8)
Supergravity as the square of Super Yang-Mills A geometric approach

Silvia Nagy

Outline
Clues for an unexpected relationship
A (super)quick intro to Supergravity and Super Yang-Mills
The Magic Square
A Magic Square of Supergravities
Magic pyramid
Conclusions and future work

SYM in various dimensions

- Remember the lagrangian:
 \[\mathcal{L} = -\frac{1}{4} \text{Tr}(F_{\mu\nu}, F^{\mu\nu}) - \frac{i}{2} \text{Tr}(\bar{\lambda}, \gamma^\mu D_\mu \lambda) \]

- We want its SUSY variation to vanish
- We get a term of the form:
 \[\text{Tr}(\lambda, \gamma^\mu [(\epsilon \gamma^\mu \lambda), \lambda]) \]

- Only vanishes in 3, 4, 6 and 10 dimensions!
What have we learnt so far?

• Extended Super YM theories characterised by division algebras in 3D.
• Tensor them to get supergravities, whose global symmetry groups are given by the magic square construction.
• Pure super-Yang-Mills theories only exist in 3, 4, 6, and 10 dimensions!
What have we learnt so far?

- Extended Super YM theories characterised by division algebras in 3D.
What have we learnt so far?

- Extended Super YM theories characterised by division algebras in 3D.
- Tensor them to get supergravities, whose global symmetry groups are given by the magic square construction.
What have we learnt so far?

- Extended Super YM theories characterised by division algebras in 3D.
- Tensor them to get supergravities, whose global symmetry groups are given by the magic square construction.
- Pure super- Yang-Mills theories only exist in 3, 4, 6 and 10 dimensions!
Supergravity as the square of Super Yang-Mills A geometric approach

Silvia Nagy

Outline
- Clues for an unexpected relationship
- A (super)quick intro to Supergravity and Super Yang-Mills
- The Magic Square
- A Magic Square of Supergravities
- Magic pyramid
- Conclusions and future work

The Magic Pyramid
Table of Contents

1. Clues for an unexpected relationship

2. A (super)quick intro to Supergravity and Super Yang-Mills
 - The Scalar cosets of Supergravity
 - N=1,2,4,8 Super Yang Mills over the division algebras

3. The Magic Square
 - Projective planes
 - Isometries of the projective planes
 - The Magic Square

4. A Magic Square of Supergravities
 - Tensoring the Multiplets
 - MAGIC!

5. Magic pyramid

6. Conclusions and future work
Conclusions and future work

- Division algebras provide further evidence for the idea that Supergravity is, in a sense, the square of a gauge theory.
Conclusions and future work

- Division algebras provide further evidence for the idea that Supergravity is, in a sense, the square of a gauge theory.
- Supergravity pyramid, Lagrangian.
Conclusions and future work

- Division algebras provide further evidence for the idea that Supergravity is, in a sense, the square of a gauge theory.
- Supergravity pyramid, Lagrangian.
- Symmetries of SuGra from symmetries of SYM.