The Iwasawa decomposition for symmetric spaces

It can be applied only to a non compact group G_{nc}. Let’s start by studying an irreducible representation of the algebra \mathfrak{g}.

1) Identification of the Lie algebra \mathfrak{g} corresponding to the symmetrically embedded maximal compact subgroup H: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$, with \mathfrak{p} the vector space orthogonal to \mathfrak{h} and $\mathfrak{h} = \text{dim}(H)$.

2) Choice of a maximal non compact Cartan subgroup \mathfrak{a} as a pivot. It is generated by i commuting generators $(a_1, ..., a_i)$, where i is the rank of the group. Out of these, all but one can be chosen non compact, i.e. $(a_1, ..., a_{i-1})$, where i is the rank of the group G/D.

3) Calculation of the corresponding system of positive roots (ρ_i) and of the corresponding eigenmatrices (λ_{ρ_i}), $i = 1, ..., n$, of the dimension of the normalizer of a_i in H.

4) Computation of a realization of a generic element γ of the group G by using the above fiberation to construct a well-defined parametrization of the group:

$$\gamma = HAN$$

with H the fiber,

\mathfrak{A}Abelian subgroup generated by \mathfrak{a}_i,

\mathfrak{N}nilpotent subgroup generated by the eigenmatrices (λ_{ρ_i}), $i = 1, ..., n - 2$, $k = i$ with the dimension of the normalizer of \mathfrak{a}_i in \mathfrak{h}.

Generalization to all the faithful representations for all the non compact real forms

Let p be a complex simple Lie algebra of rank l and \mathfrak{g} be its real form corresponding to a given symmetric space of type T and rank l. Consider its Satake diagram in the classification by Vinberg (Journal of Mathematics, Osaka City University, 13 (1962)). Let E_i be the column vector in \mathbb{R}^l with entry 1 if the corresponding simple root in the diagram is associated to a white dot, i.e. if it belongs to the quotient, and zero otherwise (Satake vector). Let $|E_i|_2$ be the canonical basis of E_i. Then the nilpotent $\mathfrak{N}(E_i)$ in the \mathfrak{g}-\mathfrak{h} fundamental representation is a polynomial degree $d_{2p} = 2d_{2l}$, where $d_{2l} = \mathfrak{g}^{\mathfrak{h}}$. Here \mathfrak{g} is the Cartan matrix of \mathfrak{g}.

For reducible representations: the degree is determined by the maximal span among all subrepresentations.

For semisimple groups: by the maximal span among the simple factors.

Non compact Lie groups with the list of data necessary for the analysis

<table>
<thead>
<tr>
<th>\mathfrak{g}</th>
<th>$\text{dim}(\mathfrak{g})$</th>
<th>\mathfrak{a}</th>
<th>$\text{dim}(\mathfrak{a})$</th>
<th>\mathfrak{p}</th>
<th>$\text{dim}(\mathfrak{p})$</th>
<th>\mathfrak{N}</th>
<th>$\text{dim}(\mathfrak{N})$</th>
<th>\mathfrak{H}</th>
<th>$\text{dim}(\mathfrak{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathfrak{sl}_2</td>
<td>3</td>
<td>C</td>
<td>2</td>
<td>\mathfrak{p}</td>
<td>1</td>
<td>\mathfrak{N}</td>
<td>1</td>
<td>\mathfrak{H}</td>
<td>1</td>
</tr>
<tr>
<td>\mathfrak{su}_2</td>
<td>2</td>
<td>C</td>
<td>1</td>
<td>\mathfrak{p}</td>
<td>1</td>
<td>\mathfrak{N}</td>
<td>1</td>
<td>\mathfrak{H}</td>
<td>1</td>
</tr>
<tr>
<td>\mathfrak{so}_2</td>
<td>1</td>
<td>C</td>
<td>0</td>
<td>\mathfrak{p}</td>
<td>0</td>
<td>\mathfrak{N}</td>
<td>0</td>
<td>\mathfrak{H}</td>
<td>0</td>
</tr>
</tbody>
</table>

Applications to supergravity

From the results in tables 1–3:

1) Simplest case: 4-dim. $\mathfrak{N} = 4$ pure supergravity and $\mathfrak{N} = 2$ supergravity minimally coupled to one Abelian vector multiplet

$\mathfrak{g} = \mathfrak{so}(1,1)(\mathbb{C})$ in the representation 2.

Result: $\text{dim}(\mathfrak{g}) = 1$.

2) The \mathfrak{N} model $\frac{\mathfrak{g}}{\mathfrak{h}}$ in the rep. 4 = weight $3\mathfrak{e}_1$.

This agrees with the findings of [Greene, Ferrara, Grossi, Mariani, Milanowski, 1201.0531; 1204.5175].

It is an example of a representation which does not correspond to a fundamental weight.

3) $\mathfrak{N} = 2$ Magic theories associated to the algebra $\mathfrak{E}(A_1, A_1(3,3), (3,3,3))$

In this table $\mathfrak{C}_{\mathfrak{N}}$ describes the electric magnetic duality of the corresponding theory, which is defined in D dimensions. Each subsequent row can be obtained by dimensional reduction of the previous one, e.g., each column from the following one by truncation:

| \mathfrak{N} | \mathfrak{g} | $\text{dim}(\mathfrak{g})$ | \mathfrak{a} | $\text{dim}(\mathfrak{a})$ | \mathfrak{p} | $\text{dim}(\mathfrak{p})$ | \mathfrak{N} | $\text{dim}(\mathfrak{N})$ | \mathfrak{H} | $\text{dim}(\mathfrak{H})$ |
|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|
| 2 | $\mathfrak{so}(1,1)(\mathbb{C})$ | 1 | C | 0 | \mathfrak{p} | 0 | \mathfrak{N} | 0 | \mathfrak{H} | 0 |
| 2 | $\mathfrak{su}(2)$ | 2 | C | 1 | \mathfrak{p} | 1 | \mathfrak{N} | 1 | \mathfrak{H} | 1 |
| 2 | $\mathfrak{so}(2)$ | 1 | C | 0 | \mathfrak{p} | 0 | \mathfrak{N} | 0 | \mathfrak{H} | 0 |

Notice that the values of d_{2p} depend only on the space-time dimension D. This is consistent with the Tate-Satake projection [Fru, Sonn, Triegrar, arXiv:1107.5846 (hep-th)].