Perturbation Theory in Flat FLRW Cosmology and Beyond

Alex Leithes

Why use flat FLRW (Friedmann-Lemaître-Robertson-Walker) Cosmology?

- Problems of Hot Big Bang Model
 - Flatness: Latest Planck data - flat within 0.2%
 - Early deviation from flatness rapidly grows. Why so flat now?
 - Horizon: Visible horizon/Hubble radius early times << area visible today
 e.g. CMB ≈ 1deg << whole sky
 - Flatness: Accelerated expansion rapidly drives universe towards flat.
 - Horizon: Universe inflates - superluminal expansion
 Small region in thermal equilibrium inflated beyond horizon.
 - Inflation: Flattens, Causally connects.

- Homogeneous versus Inhomogeneous Cosmologies and Inflation
 - Large Scale Structure: Beyond ≈ 100 Mpc, homogeneous.
 - CMB: No temperature variation > 10^{-5} K, homogeneous.
 - Clusters and voids: small scale inhomogeneities.
 - Temperature Fluctuations (∼ 10^{-5}): small scale inhomogeneities.
 - Inflation driven by: simplest - scalar field, called Inflaton.
 - Quantum fluctuations seed perturbations.

Figure: Universe timeline, including inflationary period - ESA

Figure: Left: ESA Planck CMB δT map - Right: SDSS(III) Cluster and Void survey

Perturbation Theory in flat FLRW Cosmology.

Scalar Field Inflation and Perturbations in Brief

- Power Spectrum of scalar field perturbations,
 \[P_S(k) = \left(\frac{H}{2\pi} \right)^2 \left(\frac{H}{2\pi} \right)^2 \bigg|_{k=\alpha H} \]

- Related to Power Spectrum Scalar (density) perturbations,
 \[P_S(k) = \left(\frac{H}{2\pi} \right)^2 \left(\frac{H}{2\pi} \right)^2 \bigg|_{k=\alpha H} \]

- Metric:
 \[ds^2 = -(1 + 2\phi) dt^2 + 2aB_i dx^i dt + a^2 (\delta_{ij} + 2C_{ij}) dx^i dx^j \]
 Note: \(C_{ij} \) may be further decomposed: \(C_{ij} = E_{ij} \delta_{ij} \)

- 4-velocity: \(u^\mu = \left[1 - \phi \right] \frac{\nu^\mu}{a} \]

- Energy Density and Pressure:
 \[\rho = \rho_{(0)} + \delta \rho, \quad P = P_{(0)} + \delta P \]

- Perturbed portion of Energy Conservation \(\rightarrow \)
 \[\partial_t \delta \rho + 3H (\delta \rho + \delta P) + (\delta v^i \nabla^2 + \delta \nabla^i) \left(\rho_{(0)} + P_{(0)} \right) = 0 \]

- Curvature perturbation \(\zeta = -\psi - H \frac{\nu^i}{\rho_{(0)}} \)
 \[\therefore \zeta = -\phi \bigg|\bigg|_{\delta p=0} \]
 and is defined on uniform density hypersurfaces.

- Uniform density curvature perturbation, \(\zeta \), conserved for barotropic fluid, on large scales.

Why Perturb Cosmologies beyond flat FLRW (my goal)?

- LTB as an alternative cosmology
 - Spherically symmetric spacetime.
 - FLRW is a subclass of LTB.
 - Unperturbed Metric:
 \[ds^2 = -dt^2 + X^2(r,t)dr^2 + Y^2(r,t)ds^2 + \left(\frac{d\theta^2}{\sin^2\theta} \right) + \left(d\phi^2 + d\psi^2 + d\omega^2 \right) \]

- Two scale factors, not independent.
- Seeking to apply perturbation theory at linear order to LTB.
- To recover Perturbed Conservation Equations for LTB - is there a \(\zeta \) in LTB?
- More general than flat FLRW.
- Only perturbations around flat FLRW background well understood.
- Planck 2013 results: North-south CMB power asymmetry - quadrupole/octopole alignment fuelled interest in inhomogeneous cosmologies
- Void models, structure formation - e.g. Sussman 2013 intro reviews field.
- Deeper understanding of FLRW.