High-p_T probes of the partonic structure of heavy nuclei

Dennis V. Perepelitsa
Brookhaven National Laboratory

27 June 2014
New Talent Session
52nd International School of Subnuclear Physics
High-p_T probes of the partonic structure of heavy nuclei protons(?)

Dennis V. Perepelitsa
Brookhaven National Laboratory

27 June 2014
New Talent Session
52nd International School of Subnuclear Physics
Parton densities in nuclei

\[R = f_{i/A}(x, Q^2) / A \times f_{i/p}(x, Q^2) \]

- Naively, \(f_{i/A}(x, Q^2) = A \times f_{i/p}(x, Q^2) \)
 - but the history of nuclear DIS experiments have shown that parton distributions functions are modified in nuclei
 - nPDFs are far less constrained that proton PDFs
- **Goal:** broad measurement of nPDFs as a function of \(x_A \) and \(Q^2 \)
null hypothesis: $p+A$ collisions behave like an incoherent superposition of a geometrically equivalent number of pp collisions

$$R = \frac{(1/N_{\text{evt}}) \frac{d^2N}{d\rho_Tdy}}{<T_{pA}> \frac{d^2\sigma}{d\rho_Tdy}}$$

Major experimental challenge: dealing with the presence of the correlated nuclear background

double differential jet yield

pp jet cross-section

$nuclear thickness function$

Nucleonic luminosity seen by the proton,

$$<T_{pA}> = \# \text{ colliding nucleons} / \text{NN cross-section}$$

In the absence of nuclear effects, $R = 1$
Experimental selection of geometry

Geometry is inferred through measurements of soft particle production in the downstream A direction

"central" \(p+A \) collisions
- small \(b \)
- many struck nucleons
- large multiplicity

"peripheral" \(p+A \) collisions
- large \(b \)
- few struck nucleons
- small multiplicity

Glauber MC + models of particle production allow us to estimate \(\langle T_{pA} \rangle \) (and thus measure \(R \)) separately for central and peripheral events
Recent $p(d)+A$ data

$d+Au$ collisions, 2008
$\sqrt{s_{NN}} = 200$ GeV

$\sqrt{s_{NN}} = 5.02$ TeV

$p+Pb$ collisions, 2013

PHENIX Experiment @ Relativistic Heavy Ion Collider

ATLAS Experiment @ Large Hadron Collider
Dijet event in p+Pb collision at 5.02 TeV, January 2013 @ the LHC
\(d+Au \) collisions @ RHIC

- \(R \) for geometry-selected \(d+Au \) collisions
- \(\approx 1 \), as expected, in early 2003 measurements
$d+Au$ collisions @ RHIC

- R for geometry-selected $d+Au$ collisions
 - ≈ 1, as expected, in early 2003 measurements
- Surprising effects at higher p_T ($x_{Au} > 0.1$)
 - $R < 1$ for central, > 1 for peripheral collisions
- large changes in the density of partons available for hard-scattering?
$p+$Pb collisions

@ LHC

- b-averaged $p+$Pb collisions
- over 5 units of rapidity
- $R \approx 1$
- (or only slightly higher from expected nPDF effects, which are small at high Q^2)
p+Pb collisions
@ LHC

- geometry-selected p+Pb collisions

- large deviations from the geometric expectation!

- $R \gg 1$ in **peripheral** events

- $R \ll 1$ in **central** events

- detailed pattern of modification vs. p_T, y^*, geometry selection, etc.

Large, b-dependent changes in nuclear pdf?
Patterns in the kinematic dependence

- Ratio between central and peripheral events

Simple kinematic dependence on the total jet energy \(p \) over many units of rapidity
- in the downstream proton direction, \(p \) mostly reflects \(\approx x_p (\sqrt{s}/2) \)
- The modifications are related to the proton initial state(!?)

\[\int L dt = 27.8 \text{ nb}^{-1} \]
\[p + \text{Pb} \sqrt{s}_{\text{NN}} = 5.02 \text{ TeV} \]
\[\text{anti-}k_t, R=0.4 \]
Proton interaction strength fluctuations

One idea: interaction strength of the proton changes event to event

• in a way that depends on x_p (hep-ph/1402.2868)
• within Glauber, this is like changing the (effective) transverse size of the proton wavefunction
 • nucleus is a filter on the proton size, “mimicking” a geometric signal

Irony: we make these measurements to learn something about the nuclear wavefunction

⇒ we may be learning something about the proton instead…
Conclusion

• Measurements of high-p_T jet production in $p/d+A$ collisions
 • widest kinematic range yet for (b-averaged) nPDF’s
 • may be giving us unexpected insight into the nature of the proton wavefunction at high x

• More information:
 • $p+$Pb jet production: ATLAS-CONF-2014-024
 • $p+$Pb geometry categorization: ATLAS-CONF-2013-096
 • $d+$Au jet production: Nucl. Phys. A904-905 (2013) 1003c-1006c
 • ☆ RHIC/AGS Thesis Award, 2014
 • Thank you to the organizers and Professor M.J. Tannenbaum
Geometric models of $p+A$ collisions

- MC simulations of the Glauber model
- non-relativistic, semi-classical model
- nuclei are built out of nucleons by sampling the underlying charge distribution
- all nucleons proceed on a straight-line path
- a proton and nucleon collide if $r_{pN} < (\sqrt{\sigma_{NN}})/\pi$