Model-independent study of vector-like quarks scenarios

Hugo Prager

A. Deandrea, S. Moretti, D. O’Brien, L. Panizzi

27th of June, 2015
Erice
Introduction

- **Vector-like quark (VLQ):** particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

 - Warped or universal extra-dimensions: KK excitations of bulk fields
 - Composite Higgs models: VLQ appear as excited resonances of the bounded states which form SM particles
 - Little Higgs models: partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
 - Non-minimal SUSY extensions: VLQs increase corrections to Higgs mass without affecting EWPT
Introduction

Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- Warped or universal *extra-dimensions*:
 - KK excitations of bulk fields
Introduction to vector-like quarks

Visible decay

Invisible decay (preliminary results)

Introduction

Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- Warped or universal *extra-dimensions*:
 - KK excitations of bulk fields
- *Composite Higgs* models:
 - VLQ appear as excited resonances of the bounded states which form SM particles
Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- Warped or universal *extra-dimensions*:
 KK excitations of bulk fields
- *Composite Higgs* models:
 VLQ appear as excited resonances of the bounded states which form SM particles
- *Little Higgs* models:
 partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
Introduction

Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- **Warped or universal *extra-dimensions***:
 - KK excitations of bulk fields
- **Composite Higgs models**:
 - VLQ appear as excited resonances of the bounded states which form SM particles
- **Little Higgs models**:
 - partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- **Non-minimal *SUSY extensions***:
 - VLQs increase corrections to Higgs mass without affecting EWPT

Goal:
From a model-independent analysis, we want to obtain constraints on a general model featuring one or several VLQs.
Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- **Warped or universal *extra-dimensions*:**
 - KK excitations of bulk fields
- **Composite Higgs models:**
 - VLQ appear as excited resonances of the bounded states which form SM particles
- **Little Higgs models:**
 - partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- **Non-minimal *SUSY extensions***:
 - VLQs increase corrections to Higgs mass without affecting EWPT
- ...
Vector-like quark (VLQ): particular kind of quarks that are predicted by many scenarios beyond the Standard Model (SM) in different numbers and types:

- **Warped or universal *extra-dimensions***:
 KK excitations of bulk fields
- **Composite Higgs models**:
 VLQ appear as excited resonances of the bounded states which form SM particles
- **Little Higgs models**:
 partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- **Non-minimal *SUSY extensions***:
 VLQs increase corrections to Higgs mass without affecting EWPT
- ...

Goal: From a model-independent analysis, we want to obtain constraints on a general model featuring one or several VLQs.
1 Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2 Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3 Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
1. Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2. Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3. Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
1 Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2 Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3 Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
Definition

A *vector-like quark* (VLQ) is a quark whose left- and right-handed chiralities belong to the same representation of the symmetry group G of the underlying theory. For the Standard Model (SM), $G = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$.

$$G = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y.$$
Vector-like quark (VLQ)

Definition

A *vector-like quark* (VLQ) is a quark whose left- and right-handed chiralities belong to the same representation of the symmetry group G of the underlying theory. For the Standard Model (SM), $G = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$.

For VLQs, we have *both* left-handed and right-handed charged currents

$$J^{\mu+} = J^{\mu+}_L + J^{\mu+}_R = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d = V$$

while for the SM chiral quarks we *only* have left-handed charged currents

$$J^{\mu+} = J^{\mu+}_L + J^{\mu+}_R \text{ with } \begin{cases} J^{\mu+}_L = \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = V - A \\ J^{\mu+}_R = 0 \end{cases}$$
Moreover, since a 4th generation of chiral quarks is excluded at 4.8\(\sigma\) by LHC Higgs data ([1209.1101]), searches for VLQs will acquire high priorities experimentally.
1 Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2 Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3 Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
Quantum numbers

<table>
<thead>
<tr>
<th></th>
<th>SM quarks</th>
<th>Singlets</th>
<th>Doublets</th>
<th>Triplets</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_L</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>q_R</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{q_L}</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{u_R}</td>
<td>2/3</td>
<td>7/6</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>Y_{d_R}</td>
<td>-1/3</td>
<td>1/6</td>
<td>-1/3</td>
<td></td>
</tr>
<tr>
<td>L_m</td>
<td>forbidden1</td>
<td>$-M\bar{\psi}\psi$</td>
<td>$-M\bar{\psi}\psi$</td>
<td>$-M\bar{\psi}\psi$</td>
</tr>
</tbody>
</table>

1The Higgs mechanism is needed.
Visible and invisible decays

Two kinds of model:

- VLQ decaying to visible particles: the possibilities of decay for a VLQ
 T are $Z u_i$, $H u_i$ and $W^+ d_i$.

$$Q_{VL} \rightarrow q_{SM}^W W^\pm$$

- VLQ decaying to invisible particles (Dark Matter): the only possibility
 of decay for a VLQ
 T is χu_i, where χ is a DM particle (scalar or vector) made stable by a
 Z_2 symmetry imposed to the Lagrangian.

$$Q_{VL} \rightarrow q_{SM}^Z Z$$

$$Q_{VL} \rightarrow q_{SM}^H H$$
Visible and invisible decays

Two kinds of model:

- VLQ decaying to visible particles: the possibilities of decay for a VLQ T are $Z u_i$, $H u_i$ and $W^+ d_i$.

- VLQ decaying to invisible particles (Dark Matter): the only possibility of decay for a VLQ T is χu_i, where χ is a DM particle (scalar or vector) made stable by a \mathbb{Z}_2 symmetry imposed to the Lagrangian.
1 Introduction to vector-like quarks
 • Presentation of VLQ
 • Phenomenology of VLQ

2 Visible decay
 • The XQCAT program
 • Study of the interferences
 • Offshellness analysis

3 Invisible decay (preliminary results)
 • Presentation of the project
 • Relic density
1. Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2. Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3. Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
Introduction to vector-like quarks

Visible decay

Invisible decay (preliminary results)

The XQCAT program

Study of the interferences

Offshellness analysis

Presentation of the project

XQCAT in a nutshell

XQCAT = eXtra Quark Combined Analysis Tool

https://launchpad.net/xqcat

INPUT

- Mass
- Branching ratios to SM states
- Dominant chirality of couplings to SM

For each heavy quark

CROSS-SECTIONS

WEIGHTED WITH EFFICIENCIES AND BRs

and therefore

NUMBER OF SIGNAL EVENTS

For each implemented search

OUTPUT

Exclusion confidence level

$$\epsilon CL \equiv 1 - CL_s$$

For each implemented search

or for searches in combination

Pre-simulated

DATABASE OF EFFICIENCIES

per bin, per mass, per channel

For each implemented search

(ATLAS, CMS)
First results of XQCAT: 1 T singlet
but with different mixing structure

$BR(Zq) = BR(Hq) = 25\% \quad BR(Wq) = 50\%$

- Stronger bounds when mixing with 3rd generation.
- Mixing with light generation: SUSY searches are more sensitive than direct searches.
1 Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2 Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3 Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
Estimation of the interference

- Model with two VLQs T_1 and T_2
Estimation of the interference

- Model with two VLQs T_1 and T_2
- We have $T_1 \bar{T}_1 \rightarrow W^+ b \ W^- \bar{b}$ but also $T_2 \bar{T}_2 \rightarrow W^+ b \ W^- \bar{b}$.
Estimation of the interference

- Model with two VLQs T_1 and T_2
- We have $T_1 \bar{T}_1 \rightarrow W^+ b \ W^- \bar{b}$ but also $T_2 \bar{T}_2 \rightarrow W^+ b \ W^- \bar{b}$.
- Cross section: $\sigma \propto (A_{T_1} + A_{T_2})^2 \propto A_{T_1}^2 + A_{T_2}^2 + 2 \text{Re}(A_{T_1} A_{T_2}^*)$

\[
\begin{align*}
\sigma & \propto (A_{T_1} + A_{T_2})^2 \\
& \propto A_{T_1}^2 + A_{T_2}^2 + 2 \text{Re}(A_{T_1} A_{T_2}^*) \\
& \propto \sigma_1 + \sigma_2 + \text{interference term}
\end{align*}
\]
Model with two VLQs T_1 and T_2

We have $T_1 \bar{T}_1 \rightarrow W^+ b \ W^- \bar{b}$ but also $T_2 \bar{T}_2 \rightarrow W^+ b \ W^- \bar{b}$.

Cross section: $\sigma \propto (A_{T_1} + A_{T_2})^2 \propto A_{T_1}^2 + A_{T_2}^2 + 2 \text{Re}(A_{T_1}A_{T_2}^*)$

How to estimate the value of the interference term?
Estimation of the interference

- Model with two VLQs T_1 and T_2
- We have $T_1 \bar{T}_1 \rightarrow W^+ b \ W^- \bar{b}$ but also $T_2 \bar{T}_2 \rightarrow W^+ b \ W^- \bar{b}$.
- Cross section: $\sigma \propto (\mathcal{A}_{T_1} + \mathcal{A}_{T_2})^2 \propto \mathcal{A}^2_{T_1} + \mathcal{A}^2_{T_2} + 2 \text{Re}(\mathcal{A}_{T_1} \mathcal{A}^*_{T_2})$, i.e., the cross section is proportional to the squared couplings times the integral of the BW propagators.

How to estimate the value of the interference term?

- We can show using the narrow-width approximation (NWA) that $\sigma_i \propto g^2_{i+} g^2_{i-} \left(\int \frac{dq}{2\pi} \mathcal{P}_i^0 \mathcal{P}_i^{0*} \right)^2$, i.e., that the cross section is proportional to the squared couplings times the integral of the BW propagators.
Estimation of the interference

- Model with two VLQs T_1 and T_2
- We have $T_1 \bar{T}_1 \to W^+ b \ W^- \bar{b}$ but also $T_2 \bar{T}_2 \to W^+ b \ W^- \bar{b}$.
- Cross section: $\sigma \propto (A_{T_1} + A_{T_2})^2 \propto A_{T_1}^2 + A_{T_2}^2 + 2 \text{Re}(A_{T_1} A_{T_2}^*)$

- How to estimate the value of the interference term?

- We can show using the narrow-width approximation (NWA) that

 \[\sigma_i \propto g_i^2 g_{i-}^2 \left(\int \frac{dq^2}{2\pi} P_{i0} P_{i0}^* \right)^2, \]

 i.e. that the cross section is proportional to the squared couplings times the integral of the BW propagators.

 \[\Rightarrow \text{Ansatz: } \sigma_{\text{int}} \propto 2g_1 + g_{2-} + g_2 - \text{Re} \left\{ \left(\int \frac{dq^2}{2\pi} P_{10}^* P_{20} \right)^2 \right\} \]
Interference plot

\[F_{12} = \frac{\sigma_{\text{int}}}{\sigma_1 + \sigma_2} \approx \frac{2 \ g_1 g_{1-} g_2 + g_{2-} \ Re \left\{ \left(\int \frac{dq^2}{2\pi} \mathcal{P}_1^{0} \mathcal{P}_2^{0*} \right)^2 \right\}}{g_1^2 g_{1-} \left(\int \frac{dq^2}{2\pi} \mathcal{P}_1^{0} \mathcal{P}_1^{0*} \right)^2 + g_2^2 g_{2-} \left(\int \frac{dq^2}{2\pi} \mathcal{P}_2^{0} \mathcal{P}_2^{0*} \right)^2} = \kappa_{12} \]

\[pp \rightarrow W^+ b \ Zt \ m_{t_1} = 300 \text{ GeV} \quad \text{NWF}=0.01 \]
Interference effects cannot be well-treated for large $\Gamma/M \rightarrow$ let’s explore in a quantitative way the deviations from NWA.
Introduction to vector-like quarks
- Presentation of VLQ
- Phenomenology of VLQ

Visible decay
- The XQCAT program
- Study of the interferences
- Offshellness analysis

Invisible decay (preliminary results)
- Presentation of the project
- Relic density
Considering a general model featuring a T singlet decaying into visible particles (BR = 100 % on the chosen channel).

<table>
<thead>
<tr>
<th>Γ_T/Γ_T (%)</th>
<th>$(\sigma_{\text{off}} - \sigma_{\text{prod}})/\sigma_{\text{prod}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T \rightarrow Wb$</td>
</tr>
<tr>
<td>-0.45</td>
<td>-0.4</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.35</td>
</tr>
<tr>
<td>-0.35</td>
<td>-0.3</td>
</tr>
<tr>
<td>-0.3</td>
<td>-0.25</td>
</tr>
<tr>
<td>-0.25</td>
<td>-0.2</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.15</td>
</tr>
<tr>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>-0.05</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
</tr>
</tbody>
</table>

	$T \rightarrow Ze$
-0.45	-0.4
-0.4	-0.35
-0.35	-0.3
-0.3	-0.25
-0.25	-0.2
-0.2	-0.15
-0.1	-0.1
-0.05	0
0	0
0.05	0
0.1	0
0.15	0
0.2	0
0.25	0
0.3	0
0.35	0
0.4	0

	$T \rightarrow Hb$
-0.45	-0.4
-0.4	-0.35
-0.35	-0.3
-0.3	-0.25
-0.25	-0.2
-0.2	-0.15
-0.1	-0.1
-0.05	0
0	0
0.05	0
0.1	0
0.15	0
0.2	0
0.25	0
0.3	0
0.35	0
0.4	0

Wb and Ze channels: the offshell contribution is more important when Γ_T/Γ_T is large.

Ht channel: different behaviour due to the fact that the coupling to the Higgs is proportional to the mass M_T. Study of the differential distributions needed.
Considering a general model featuring a T singlet decaying into visible particles (BR = 100 % on the chosen channel).
Considering a general model featuring a T singlet decaying into visible particles (BR = 100% on the chosen channel).

- Wb and Zt channels: the offshell contribution is more important when Γ/M is large.
Considering a general model featuring a T singlet decaying into visible particles ($\text{BR} = 100\%$ on the chosen channel).

- Wb and Zt channels: the offshell contribution is more important when Γ / M is large.

- Ht channel: different behaviour due to the fact that the coupling to the Higgs is proportional to the mass M_T → study of the differential distributions needed.
1. Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2. Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3. Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
1. Introduction to vector-like quarks
 - Presentation of VLQ
 - Phenomenology of VLQ

2. Visible decay
 - The XQCAT program
 - Study of the interferences
 - Offshellness analysis

3. Invisible decay (preliminary results)
 - Presentation of the project
 - Relic density
Global project

Goal: build a XQCATDM program to get exclusion confidence level for scenarios featuring VLQ decaying to DM.
Global project

Goal: build a XQCATDM program to get exclusion confidence level for scenarios featuring VLQ decaying to DM.

- same features than XQCAT for the LHC constraints,
Global project

Goal: build a XQCATDM program to get exclusion confidence level for scenarios featuring VLQ decaying to DM.
- same features than XQCAT for the LHC constraints,
- cosmological constraints coming from relic density calculation,
Goal: build a XQCATDM program to get exclusion confidence level for scenarios featuring VLQ decaying to DM.

- same features than XQCAT for the LHC constraints,
- cosmological constraints coming from relic density calculation,
- similar analysis to perform: interference and offshellness effects (ongoing work)
Goal: build a XQCATDM program to get exclusion confidence level for scenarios featuring VLQ decaying to DM.

- same features than XQCAT for the LHC constraints,
- cosmological constraints coming from relic density calculation,
- similar analysis to perform: interference and offshellness effects (ongoing work)

Interesting analogy with SUSY searches (same final state)

If a signal is observed, it may be possible to distinguish a VLQ signal from a SUSY signal from the different kinematics of the events!
Introduction to vector-like quarks
- Presentation of VLQ
- Phenomenology of VLQ

Visible decay
- The XQCAT program
- Study of the interferences
- Offshellness analysis

Invisible decay (preliminary results)
- Presentation of the project
- Relic density
By computing the relic density of DM in a model featuring a VLQ T decaying to a scalar DM particle we can impose strong constraints on the value of the masses and coupling.

$$\Omega_{DM} \sim \frac{1}{<\sigma v>}$$

These preliminary results still have to be checked using micrOMEGAs.
Conclusion

- We considered general models featuring VLQ in a model-independent way.
Conclusion

- We considered general models featuring VLQ in a **model-independent way**.

- For VLQ decaying to **visible particles**.
Conclusion

- We considered general models featuring VLQ in a **model-independent way**.

 For VLQ decaying to **visible particles**
 - We already have the *XQCAT* program which allows us to impose *LHC constraints* on a model.

- For VLQ decaying to **invisible particles**
 - We can build *XQCATDM* the same way than *XQCAT* to impose *LHC constraints* on a model, and we will have to consider carefully the **offshellness** and **interference** effects (especially for large widths). For this kind of models the **cosmological constraints** can put strong restrictions on the free parameters. It may be possible to distinguish the origin of a signal by studying the **kinematics** of the event.
We considered general models featuring VLQ in a *model-independent way*.

For VLQ decaying to **visible particles**
- We already have the *XQCAT* program which allows us to impose *LHC constraints* on a model.
- In the case of model featuring several VLQ, the *interference* effects can have a crucial importance.
Conclusion

- We considered general models featuring VLQ in a **model-independent way**.

- For VLQ decaying to **visible particles**
 - We already have the *XQCAT* program which allows us to impose *LHC constraints* on a model.
 - In the case of model featuring several VLQ, the *interference* effects can have a crucial importance.
 - *XQCAT* results are only valid in the NWA so we have to take the *offshellness* effects into account when the width become large.

- For VLQ decaying to **invisible particles** (DM)
 - We can build *XQCATDM* the same way than *XQCAT* to impose *LHC constraints* on a model, and we will have to consider carefully the *offshellness* and *interference* effects (especially for large widths).
 - For this kind of models the *cosmological constraints* can put strong restrictions on the free parameters.
 - It may be possible to distinguish the origin of a signal by studying the *kinematics* of the event.
Conclusion

- We considered general models featuring VLQ in a **model-independent way**.

- For VLQ decaying to **visible particles**
 - We already have the XQCAT program which allows us to impose *LHC constraints* on a model.
 - In the case of a model featuring several VLQ, the *interference* effects can have a crucial importance.
 - XQCAT results are only valid in the NWA so we have to take the *offshellness* effects into account when the width becomes large.

- For VLQ decaying to **invisible particles** (DM)
Conclusion

- We considered general models featuring VLQ in a **model-independent way**.

 - For VLQ decaying to **visible particles**
 - We already have the XQCAT program which allows us to impose *LHC constraints* on a model.
 - In the case of model featuring several VLQ, the *interference* effects can have a crucial importance.
 - XQCAT results are only valid in the NWA so we have to take the *offshellness* effects into account when the width become large.

 - For VLQ decaying to **invisible particles** (DM)
 - We can build XQCATDM the same way than XQCAT to impose *LHC constraints* on a model, and we will have to consider carefully the *offshellness* and *interference* effects (especially for large widths).
Conclusion

- We considered general models featuring VLQ in a model-independent way.

- For VLQ decaying to visible particles
 - We already have the XQCAT program which allows us to impose LHC constraints on a model.
 - In the case of a model featuring several VLQ, the interference effects can have a crucial importance.
 - XQCAT results are only valid in the NWA so we have to take the offshellness effects into account when the width becomes large.

- For VLQ decaying to invisible particles (DM)
 - We can build XQCATDM the same way than XQCAT to impose LHC constraints on a model, and we will have to consider carefully the offshellness and interference effects (especially for large widths).
 - For this kind of models the cosmological constraints can put strong restrictions on the free parameters.
We considered general models featuring VLQ in a model-independent way.

For VLQ decaying to visible particles
- We already have the XQCAT program which allows us to impose LHC constraints on a model.
- In the case of model featuring several VLQ, the interference effects can have a crucial importance.
- XQCAT results are only valid in the NWA so we have to take the offshellness effects into account when the width become large.

For VLQ decaying to invisible particles (DM)
- We can build XQCATDM the same way than XQCAT to impose LHC constraints on a model, and we will have to consider carefully the offshellness and interference effects (especially for large widths).
- For this kind of models the cosmological constraints can put strong restrictions on the free parameters.
- It may be possible to distinguish the origin of a signal by studying the kinematics of the event.
Thank you for your attention.
Backup slides
Dimension of representation

- Minimal extension of the SM with only one VLQ Q
Dimension of representation

- Minimal extension of the SM with only one VLQ Q
- Yukawa coupling between a SM-quark q and Q: $\mathcal{L}_Y = -y\bar{q}HQ + h.c$
Dimension of representation

- Minimal extension of the SM with only one VLQ Q
- Yukawa coupling between a SM-quark q and Q: $\mathcal{L}_Y = -y\bar{q}HQ + h.c$
- The Lagrangian is a scalar and so a singlet of G
Dimension of representation

- Minimal extension of the SM with only one VLQ Q
- Yukawa coupling between a SM-quark q and Q: $\mathcal{L}_Y = -y \bar{q}HQ + h.c$
- The Lagrangian is a scalar and so a singlet of G

\[\Rightarrow \bar{q}HQ \text{ is a singlet} \]
In term of representation of $SU(2)_L$ we have

1. $q_R \otimes H \otimes Q = 1 \otimes 2 \otimes n = 1 \oplus \ldots$

or

2. $q_L \otimes H \otimes Q = 2 \otimes 2 \otimes n = 1 \oplus \ldots$
In term of representation of $SU(2)_L$ we have

1. $q_R \otimes H \otimes Q = 1 \otimes 2 \otimes n = 1 \oplus \ldots$

or

2. $q_L \otimes H \otimes Q = 2 \otimes 2 \otimes n = 1 \oplus \ldots$

• 1st case: $n = 2$
In term of representation of $SU(2)_L$ we have

1. $q_R \otimes H \otimes Q = 1 \otimes 2 \otimes n = 1 \oplus \ldots$

or

2. $q_L \otimes H \otimes Q = 2 \otimes 2 \otimes n = 1 \oplus \ldots$

- 1st case: $n = 2$
- 2nd case: $n = 1$ or $n = 3$
In term of representation of $SU(2)_L$ we have

1. $q_R \otimes H \otimes Q = 1 \otimes 2 \otimes n = 1 \oplus \ldots$

or

2. $q_L \otimes H \otimes Q = 2 \otimes 2 \otimes n = 1 \oplus \ldots$

- 1st case: $n = 2$
- 2nd case: $n = 1$ or $n = 3$

$\Rightarrow Q$ can only be a singlet, a doublet or a triplet.
In term of representation of $SU(2)_L$ we have

1. $q_R \otimes H \otimes Q = 1 \otimes 2 \otimes n = 1 \oplus \ldots$

or

2. $q_L \otimes H \otimes Q = 2 \otimes 2 \otimes n = 1 \oplus \ldots$

- 1st case: $n = 2$
- 2nd case: $n = 1$ or $n = 3$

\Rightarrow **Q can only be a singlet, a doublet or a triplet.**

Remark: We can also have higher representations for VLQs by considering model with more than one VLQ.
We reproduce CMS 95 % CL bounds within 50-60 GeV in the whole BR range
The Narrow-Width Approximation (NWA) allows us to simplify the computation of complex processes → very useful and used in theoretical physics.
Basic idea: factorise the whole process into the on-shell production and the subsequent decay
Proof of the NWA

\[\mathcal{M} = \mathcal{M}_P \frac{1}{q^2 - M^2 - i\Gamma} \mathcal{M}_D \]
Proof of the NWA

\[\mathcal{M} = \mathcal{M}_P \frac{1}{q^2 - M^2 - iM \Gamma} \mathcal{M}_D \]

\[|\bar{\mathcal{M}}|^2 = |\mathcal{M}_P|^2 \frac{1}{(q^2 - M^2)^2 + (M \Gamma)^2} |\mathcal{M}_D|^2 \]
Proof of the NWA

\[\mathcal{M} = \mathcal{M}_P \frac{1}{q^2 - M^2 - iM\Gamma} \mathcal{M}_D \]

\[|\bar{\mathcal{M}}|^2 = |\mathcal{M}_P|^2 \frac{1}{(q^2 - M^2)^2 + (M\Gamma)^2} |\mathcal{M}_D|^2 \]

With \(\sigma = \frac{1}{F} \int d\Phi |\bar{\mathcal{M}}|^2 \), \(d\Phi = d\Phi_P \frac{dq^2}{2\pi} d\Phi_D \) and our approximation

\[\frac{1}{(q^2 - M^2)^2 + (M\Gamma)^2} \xrightarrow{\Gamma \ll M} \frac{\pi}{M\Gamma} \cdot \delta(q^2 - M^2), \]

we find
Proof of the NWA

\[\mathcal{M} = \mathcal{M}_P \frac{1}{q^2 - M^2 - iM\Gamma} \mathcal{M}_D \]

\[|\bar{M}|^2 = |\mathcal{M}_P|^2 \frac{1}{(q^2 - M^2)^2 + (M\Gamma)^2} |\mathcal{M}_D|^2 \]

With \(\sigma = \frac{1}{F} \int d\Phi |\bar{M}|^2 \), \(d\Phi = d\Phi_P \frac{dq^2}{2\pi} d\Phi_D \) and our approximation

\[\frac{1}{(q^2 - M^2)^2 + (M\Gamma)^2} \xrightarrow{\Gamma \ll M} \frac{\pi}{M\Gamma} \cdot \delta(q^2 - M^2), \text{ we find} \]

\[\sigma \approx \sigma_P \cdot \frac{\Gamma_D}{\Gamma} \approx \sigma_P \cdot BR \]
Generalisation

2 to 4 processes with fermionic propagators.

\[\sigma = \sigma_P \frac{\Gamma_{D+}}{\Gamma_+} \frac{\Gamma_{D-}}{\Gamma_-} = \sigma_P \cdot BR_+ \cdot BR_- \]
Simulation of the process $pp \rightarrow t \bar{t} + E_T$ mediated by pair-produced T or \tilde{t}. Both signals processed through CheckMATE on a set of ATLAS searches with missing transverse energy in the final state.

One of the searches has a veto on leptons with p_T larger than 10 GeV

![Graph showing normalised leading lepton p_T](image)

$\frac{m_{t/t}}{m_{t/t}} = 600 GeV$

$\frac{m_{DM/\chi_0}}{m_{DM/\chi_0}} = 10 GeV$

CheckMATE results: the SUSY point is excluded, but not the VLQ point!

The preliminary results looks promising.