Explaining the essentials (Lecture 2)

1) The Book Keeping Problem. Completeness in QM
2) Completeness in BH
3) Finding all states
4) Fundamental input: all physical states can be written as
 a: a flat or curved space-time background, with
 b: elementary particles with momenta p_μ such that all
 components $|p| < M_{\text{Planck}}$
5) The Penrose diagram slide 21
6) Consider time interval \(t_{\text{out}} - t_{\text{in}} = \mathcal{O}(M_{\text{BH}} \log M_{\text{BH}}) \).
Let a given in-state \(|\text{BH}_1\rangle_{\text{in}} \) at \(t = t_{\text{in}} \) evolve into a given out-state \(|\text{BH}_1\rangle_{\text{out}} \) at \(t = t_{\text{out}} \).

7) Now either add or remove one particle with momentum \(\delta p_{\text{in}} \).

8) Calculate how all outgoing particles are shifted by a shift \(\delta u_{\text{out}} \).

9) relation \(\delta u_{\text{out}} = f(\delta \theta) \delta p_{\text{in}} \) is linear
\(u^\pm \) and \(p^\pm \) are coordinates very close to the horizon.

10) \([u^\pm, p^\mp] = i\delta^2(\theta_1, \varphi_1, \theta_2, \varphi_2)\) generates simple algebra.
11) Diagonalize this algebra using $Y_{\ell,m}$

12) At any given ℓ, m, get $\psi_{\text{in}}(u^+) \rightarrow \psi_{\text{out}}(u^-)$

13) Tortoise coordinates: $u = \pm e^\varrho, \quad = \sigma e^\varrho, \quad \sigma = \pm 1$

when ϱ is very large, then ignore this particle (it is far from the BH), so the corresponding p_{in} or p_{out} can also be ignored. This justifies a posteriori the assumption that large $|p|$ can be ignored

14) plane waves in ϱ: $\psi(\sigma, \varrho) = \psi(\sigma) e^{-i\kappa \varrho}$

15) The role of regions I and II

16) Unitarity forces antipodal identification

Consequences:
17) BH has no interior! It all happens at the horizon (surface): holography

18) and Hawking particles are entangled

PROBLEMS

19) \(u^{\pm}(\theta, \varphi) \) CANNOT be second quantized. It is exactly one single “particle” going in, and one particle going out, either at \(\theta, \varphi \) or at the antipodal point \(\pi - \theta, \varphi + \pi \).

How to relate these particles with the 2nd quantized particles in Fock space of the SM?

How to take SM quantum numbers into account?

Many elementary calculations still to be done!