Consistent Pauli reduction on group manifolds

Arnaud Baguet

arXiv: 1510.08926 with C.Pope, H. Samtleben

ISSP, June 2016

Motivations

 Search for a unified theory: reconciliate matter and gravity in one framework.

- Important historical example: Kaluza-Klein theory.
 electromagnetism and gravity unification by embedding in a five dimensional space-time. Provide mechanism for dimensional reduction.
- Idea still influencial today (string theory):
 - → consistent Kaluza-Klein truncation.

Powerful tool: any solution of the lower-dimensional theory can be uplifted to a solution of the higher-dimensional theory

Kaluza - Klein theory

$$\{x^{\mu}, y\}, \quad \mu = 0, \dots, 3 \qquad S = \int \mathrm{d}^4 x \, \mathrm{d} y \, \sqrt{|\det(\tilde{g})|} \, \tilde{R}$$

$$\tilde{g}_{5 \times 5} = \begin{pmatrix} g_{\mu\nu} + A_{\mu}A_{\nu} & A_{\mu} \\ A_{\nu} & 1 \end{pmatrix} \, \frac{4d}{1d}$$

Dimensional reduction hypothesis: $\partial_{\gamma}g_{\mu\nu}=0$, $\partial_{\gamma}A_{\mu}=0$

$$\longrightarrow \int \mathrm{d}^4 x \, \sqrt{|det(g)|} \big(\, R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \big) \int \mathrm{d} y$$

Photon as geometry!

Compactification

$$S = \int \mathrm{d}^4 x \sqrt{|det(g)|} \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) \int \mathrm{d}y$$

ightarrow Compactify fifth dimension, $\int \mathrm{d}y = 2\pi r$

 $r \ll very \ small \ \gg, \ fifth \ dimension \ imperceivable.$

A more general toy model

Free massless scalar field in (D+1) dimensional space satisfy

$$\hat{\Box}\hat{\varPhi}(x,y)=0$$

Now, suppose we compactify on a circle of 'small' radius R

$$\hat{\Phi}(x,y) = \sum \phi_n(x)e^{iny/R}, \quad \to \quad \Box \phi_n(x) - \frac{n^2}{R^2}\phi_n(x) = 0$$

In this case, truncating to the massless sector (n=0) is *consistent*.

But in general, could have
$$\Box \phi_1 + \tfrac{\phi_1}{R^2} = \phi_0, \ \to \ \phi_1 = 0 \ \textit{inconsistent} \ .$$

Q: Are the fields I keep sources for the fields I discard?

A simple group theoretical argument

$$\{e^{iny/R}\,,\,n\in\mathbb{Z}\}\,=\,$$
 Representations of U(1) $=\,$ Sphere harmonics of S^1

- n=0 mode: singlet, "uncharged" under U(1)
- n≠0 modes: doublets, "charged" under U(1)

Here, truncating to the massless sector = keep only the singlets modes \longrightarrow consistency guaranteed !

Why?

Doublets cannot act as sources for singlets.

 \rightarrow safe to throw them out.

Same group theoretical argument behind the "DeWitt" reduction.

DeWitt reduction vs Pauli reduction

Take internal space compact group manifold G.

$$\hat{\Phi}(x,y) = \sum_{\alpha} \varphi_{\alpha}(x) H_{\alpha}(y)$$

 H_{α} : harmonics. α related to rep. of the isometry group $G_L \times G_R$.

Massless spectrum includes Yang-Mills gauge bosons in $G_L \times G_R$.

- DeWitt (1963): Keep set of fields singlet under G_L (or G_R) \longrightarrow automatically consistent but gauge group G_L (or G_R).
- Pauli reduction: retain all the $G_L \times G_R$ gauge bosons \longrightarrow consistency not guaranteed.

Conjecture by Duff, Nilsson, Pope (1986)

 \exists consistent Pauli reduction of the bosonic string.

DFT reformulated

Coordinates
$$(x^{\mu}, Y^{M})$$
 $\mu=0..n-1, \quad M=1..2d$ $D=n+d$ \downarrow enlarged internal space $n+2d$

Then, project d unphysical coordinates with the section constraints

$$\eta^{MN}\partial_M\partial_NA=0, \qquad \eta^{MN}\partial_MA\partial_NB=0$$

for any fields or gauge parameters A,B.

$$\eta_{MN} = \left(egin{array}{cc} 0 & \delta_m{}^n \ \delta_m{}^n & 0 \end{array}
ight) \; , \; {\sf SO(d,d)} \; {\sf invariant \; tensor}$$

What do we gain from DFT?

Physically interesting example: G=SO(4)

DFT embedded in EFT

Results

Explicit reduction ansatz for all fields of the reduced theory

$$e^{4\beta\phi} = \Delta^{2\gamma}(x,y) e^{4\gamma\varphi(x)}$$

$$C_{mn} = \widetilde{C}_{mn}(y) + \Delta^{2\gamma}(x,y) \kappa_{A}{}^{D} \mathcal{K}_{D\,m} \mathcal{K}_{B}{}^{p} G_{pn}(x,y) e^{4\gamma\varphi(x)} M^{AB}(x) ,$$

$$C_{\mu\,m} = \kappa_{A}{}^{D} \mathcal{K}_{D\,m} A_{\mu}{}^{A}(x)$$

$$+ \Delta^{2\gamma}(x,y) \kappa_{C}{}^{E} \mathcal{K}_{A}{}^{n} \mathcal{K}_{E\,n} \mathcal{K}_{D}{}^{p} G_{pm}(x,y) e^{4\gamma\varphi(x)} M^{CD}(x) A_{\mu}{}^{A}(x) ,$$

$$C_{\mu\nu} = B_{\mu\nu}(x) - \kappa_{B}{}^{C} \mathcal{K}_{A}{}^{m} \mathcal{K}_{C\,m} A_{[\mu}{}^{A}(x) A_{\nu]}{}^{B}(x)$$

$$- \Delta^{2\gamma}(x,y) \kappa_{C}{}^{E} \mathcal{K}_{B}{}^{n} \mathcal{K}_{E\,n} \mathcal{K}_{D}{}^{p} \mathcal{K}_{A}{}^{m} G_{pm}(x,y)$$

$$\times e^{4\gamma\varphi(x)} M^{CD}(x) A_{[\mu}{}^{A}(x) A_{\nu]}{}^{B}(x) .$$

Conclusion

DFT manifestly covariant under SO(d,d), T-duality group
 → embedded in EFT, covariant under exceptional groups

- New tools for non-toroidal compactifications! (generalised Scherk-Schwarz ansatz)
- Full consistency proof of the Pauli reduction of the bosonic string: explicit expressions for all fields of the reduced theory