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Self-organised critical systems & turbulence (1)

Self-organised critical systems have several features:

they are open nonequilibrium systems with dissipative transport;
they are believed to be ubiquitous in the nature [1];
they have no tuning parameter, thus, their behaviour differs from that
of an equilibrium nearly-critical systems. Yet...

Self-organised critical systems under the influence of turbulence can be
studied by the same methods!

Figure : The Abelian sandpile model was the first discovered example of a dynamical
system displaying self-organised criticality.

The Method (2)

Start→ Stochastic problem→ Field theoretic formulation
(De Dominicis-Janssen action functional [2])→ Renormalization
(Dimensional analysis)→ Feynman diagrams calculation→
→ Renormalization equations→ Critical exponents→ Finish

Description of the model (3)

The model of a self-organised critical system behavior is continuous
equation for height transport with strong anisotropy [3, 4]:
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h is a height of the profile; ν⊥, ν‖ > 0 are viscosity coefficients;

x = x⊥ + nx‖, |n| = 1, x⊥n = 0, x ∈ Rd

f = f (x) is the Gaussian random noise with zero mean:

〈f (x)f (x′)〉 = 2D0δtt′δ
(d)
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The turbulent motion of the environment is modeled by simple Gaussian
statistics with zero mean, prescribed pair covariance with vanishing
correlation time and strong anisotropy:

〈vi(t,x)vj(t′,x′)〉 = δtt′Dij(x− x′),

Dij(r) = B0
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v = nv(x⊥, t); ∂ivi = ∂‖v(x⊥, t) = 0; B0 > 0 is an amplitude factor.

Field theoretic formulation of the model (4)

The stochastic problem (1) is equivalent to the field theoretic model
with the action functional
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The model has two interaction vertices: h′∂‖h
2 and −h′(v∂‖)h (Note: h′

is always under ∂‖)

Diagrammatic representation (5)

We will denote the model propagators 〈hh〉0 as a straight line, 〈hh′〉0 as
a straight line with a small stroke and the velocity propagator as the
wavy line.
The coupling constants are g0 and w0 = B0/ν‖0.

Two Galileyan symmetries (6)

The symmetry of the original equation: h→ h− u, u = const;
The symmetry of the problem augmented with the velocity field:
v→ v − nu, u = const.

The implementation:
these and other considerations reduce the number of counter terms.
canonical dimensions analysis coupled with the symmetries proves
that our model ismultiplicatively renormalizable.

Renormalization (7)

Renormalized action functional:
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Zi = 1, i 6= 6 (in all orders - thanks to the two symmetries).
For Z6 the calculation is done to the first order of the double
expansion in ξ and ε = 2− d (one-loop approx.):
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Three fixed points and scaling regimes (8)

Dark space - The Gaussian fixed point.
Vertical shading - The passively advected
scalar field - the nonlinearity of the model is
irrelevant: γ∗ = ξ (exact).
Grey space - The advection is irrelevant:
γ∗ = 2

3ε (exact).
The boundaries between the regions are
exact.

Figure : Regions of scaling
regimes.

Conclusion (9)

The most realistic values of ξ = 4/3 and d = 4 correspond to the
universality class of passive scalar field.
The critical exponents can be calculated for every regime and
compared with experimental values.

Renormalization group analysis does allow us to study the
influence of turbulence on self-organised critical systems.
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