Effects of random environment on a self-organized critical
system: Renormalization group analysis of a continuous model
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Self-organised critical systems & turbulence Diagrammatic representation

m We will denote the model propagators (hh)( as a straight line, (hh') as
a straight line with a small stroke and the velocity propagator as the
wavy line.

Self-organised critical systems have several features:

m they are open nonequilibrium systems with dissipative transport;
m they are believed to be ubiquitous in the nature [1];

_ : : : . m The coupling constants are gy and wy = By/ V)lo-
m they have no tuning parameter, thus, their behaviour differs from that

of an equilibrium nearly-critical systems. Yet... Two Galileyan symmetries

Self-organised critical systems under the influence of turbulence can be
studied by the same methods!

m The symmetry of the original equation: h — h — u, u = const;

m The symmetry of the problem augmented with the velocity field:
vV — V — nu, u = const.

The implementation:
m these and other considerations reduce the number of counter terms.

m canonical dimensions analysis coupled with the symmetries proves
that our model is multiplicatively renormalizable.

Renormalization (7)

m Renormalized action functional:
Sp = Zlh/Dh,—Fh,{—ZQ@th—ngaHfH—ZgLVJ_aih—Zg)@Hh2/2—|—Z6VHa’2|h}—|—SU

m./, = 1,i+# 6 (in all orders - thanks to the two symmetries).

- m For Z; the calculation is done to the first order of the double
Figure : The Abelian sandpile model was the first discovered example of a dynamical expansion in £ and € = 2 — d (one-loop approx.):

system displaying self-organised criticality.
<h hyi_j = iw — V||p||Z6 + —+<>— 4@—

The Method v) Ze=1—2q— Eb (a,b > 0).
€
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m Vertical shading - The passively advected
scalar field - the nonlinearity of the model is
irrelevant: v* = £ (exact).

Description of the model

The model of a self-organised critical system behavior is continuous
equation for height transport with strong anisotropy [3, 4]:

* _ 2
Oth=v Eﬁh +v ﬁﬁh — 8Hh2/2 + f. (1) 7" = 5e (exact).
m The boundaries between the regions are
exact.

m Grey space - The advection is irrelevant:

Figure : Regions of scaling
regimes.

m h is a height of the profile; v |, v| > 0are viscosity coefficients;

mx=x +nz), [n/=1,x;n=0,x¢€ R Conclusion

m f = f(x)is the Gaussian random noise with zero mean:

m The most realistic values of £ = 4/3 and d = 4 correspond to the

() f(2)) = 2Dy 51116 sl )/7 Dy = gy3/ 2 i/ 2 universality class of passive scalar field.

The turbulent motion of the environment is modeled by simple Gaussian
statistics with zero mean, prescribed pair covariance with vanishing o .
correlation time and strong anisotropy: Renormalization group analysis does allow us to study the

(03(t, X)v;(t', x')) = Sy Dij(x — ), influence of turbulence on self-organised critical systems.

m The critical exponents can be calculated for every regime and
compared with experimental values.
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