The equation of state in QCD at finite chemical potential from lattice simulations

Jana Günther

University of Wuppertal, Germany

June 16th 2016
What we want to study?

How to study it

Result
What we want to study:

The Quark-Gluon-Plasma and the transition to hadrons
The \((T, \mu_B)\)-phase diagram of QCD

Our observables:
Last Year: \(T_c\)
This year: \(P, \epsilon, S, N_B\) and \(I\) along trajectories of constant \(\frac{S}{N_B}\) and their Taylor coefficients
Ways to study the QGP:

- Time travel ✗
 The universe was not transparent for γ yet
- Looking at particle collision
 Yes, heavy ion collisions; but I'm a theorist
- Solving the theory of the strong interaction: QCD
 Yes, via Lattice QCD
Why LQCD?

\[L_{QCD} = -\frac{1}{4} F_{\mu\nu}^a F^{a,\mu\nu} + \bar{\psi} (i\gamma_\mu D^\mu - m) \psi \]

- Because of the strong coupling and the self interaction of gluons perturbation theory is not feasible
- Path integral quantisation:

\[
\langle 0 | T \hat{\phi}_1 \ldots \hat{\phi}_n | 0 \rangle = \frac{\int D\phi \hat{\phi}_1 \ldots \hat{\phi}_n e^{i \int dx \ L}}{\int D\phi \ e^{i \int dx \ L}}
\]

First problem: There are many points in space-time \(D\phi = \prod_i d\phi(x_i) \)
Solution: Replace continuous space by a discrete 4d lattice
How do we do that?

- We look at a 4d space-time lattice with size $N_s^3 \times N_t$
- Fermions live on the lattice sites gauge fields live on the links
- We use Euclidean space-time: $t \rightarrow i\tau$
- We can do Monte-Carlo-Simulations (with importance sampling) to solve our integrals
- Everything is determined in terms of our lattice spacing a
- a has to be determined by comparison with physical observables (for example $a = \frac{(am_p)_{\text{lattice}}}{938 \text{ MeV}}$)
- We have to take the limits $a \rightarrow 0$, $N_s \rightarrow \infty$
- To do thermodynamics: $T = \frac{1}{aN_t}$
Why aren’t we finished yet?

- Simulations take a lot of computer time
- Not everything can be calculated directly. For example:
 - Only observables that can be calculated in Euclidean space
 - Only thermal equilibrium
 - Only simulations at \(\mu_B = 0 \Rightarrow \langle n_B \rangle = 0 \)

heavy ion collision experiments

Solution: Analytical continuation

\[
\frac{\partial}{\partial \mu} \left(\frac{p}{T^4} \right)_{T_c(\mu)}
\]
Analytic continuation

\[\frac{d(p/T^4)}{d\mu} \]

\[T_{c(\mu)} \]

Roberge-Weiss

real chemical potentials

lattice simulations

\[\mu^2/T^2 \]

continuation

\[\frac{d(p/T^4)}{d\mu} \]

\[T_{c(\mu)} \]
The Analysis

1. Do the simulations
2. Make a fit in the T direction
3. Determine everything you need for the observables
4. Make a fit in the μ_B direction
5. Make a fit in the $\frac{1}{N_t^2}$ direction ($a \rightarrow 0$ extrapolation)
6. Determine the observables
Error estimation

- Statistical error:
 Bootstrap method

- Systematic error:
 Using different way of analysis, combining them in a histogram:
 - 2 fit functions for the T direction
 - 4 fit functions in the μ_B direction
 - Doing continuum extrapolation and μ_B-fit in one or two steps
 - 2 ways of measuring a

This adds up to 64 ways of analysis
T_c
The Taylor coefficients of \(\frac{P}{T^4} = c_0 + c_2 \left(\frac{\mu_B}{T} \right)^2 + c_4 \left(\frac{\mu_B}{T} \right)^4 + c_6 \left(\frac{\mu_B}{T} \right)^6 \)
Trajectories

Budapest-Wuppertal preliminary
Equation of state
Conclusion

- Lattice QCD is a non perturbative method to study QCD
- Results a finite μ_B can be obtained by analytical continuation
- The critical temperature can be extrapolated up to 400 MeV
- Results for the Taylor coefficients of P/T^4
- S/N_B trajectories to match heavy ion beam energies at RHIC
- Equation of state at different S/N_B values