Resurgence and Hydrodynamics in Gauss-Bonnet Holography

Ben Meiring
Jorge Casalderrey-Solana
Nikola Gushterov

University of Oxford
ben.meiring@physics.ox.ac.uk

15 June 2017
Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation equation

\[\nabla_\mu T^{\mu\nu} = 0 \] (1)

where \(T^{\mu\nu} = T^{\mu\nu}(\epsilon, P, u^\mu) \) with \(\epsilon \) the energy density, \(P \) the Pressure, and \(u^\mu \) the fluid velocity.
Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation equation

$$\nabla_\mu T^{\mu\nu} = 0$$ \hspace{1cm} (1)

where $T^{\mu\nu} = T^{\mu\nu}(\epsilon, P, u^\mu)$ with ϵ the energy density, P the Pressure, and u^μ the fluid velocity. For a perfect fluid

$$T^{\mu\nu}_{\text{ideal}} = (\epsilon_0 + P_0)u^\mu u^\nu - P_0\eta^{\mu\nu}.$$ \hspace{1cm} (2)
Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation equation

$$\nabla_\mu T^{\mu \nu} = 0$$ \hspace{1cm} (1)

where \(T^{\mu \nu} = T^{\mu \nu}(\epsilon, P, u^\mu) \) with \(\epsilon \) the energy density, \(P \) the Pressure, and \(u^\mu \) the fluid velocity. For a perfect fluid

$$T^{\mu \nu}_{\text{ideal}} = (\epsilon_0 + P_0)u^\mu u^\nu - P_0 \eta^{\mu \nu}. $$ \hspace{1cm} (2)

For a non-ideal fluid, we include every possible tensor combination of \(\partial^\mu, u^\mu \) and \(\eta^{\mu \nu} \) with co-efficients \(c_i \).
Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation equation

\[\nabla_\mu T^{\mu \nu} = 0 \] \hspace{1cm} (1)

where \(T^{\mu \nu} = T^{\mu \nu}(\epsilon, P, u^\mu) \) with \(\epsilon \) the energy density, \(P \) the Pressure, and \(u^\mu \) the fluid velocity. For a perfect fluid

\[T^{\mu \nu}_{\text{ideal}} = (\epsilon_0 + P_0)u^\mu u^\nu - P_0 \eta^{\mu \nu}. \] \hspace{1cm} (2)

For a non-ideal fluid, we include every possible tensor combination of \(\partial^\mu, u^\mu \) and \(\eta^{\mu \nu} \) with co-efficients \(c_i \).

\[T^{\mu \nu} = T^{\mu \nu}_{\text{ideal}} + c_1 \partial^\mu u^\nu + c_2 \partial^\nu u^\mu + c_3 \eta^{\mu \nu} \partial_\alpha u^\alpha + c_4 u^\mu u^\nu \partial_\alpha u^\alpha + \ldots \] \hspace{1cm} (3)
Hydrodynamics in 3+1 Dimensions

When ∂u is small we can order the series in derivatives of u^μ

$$T^{\mu\nu} = T_{\text{ideal}}^{\mu\nu} + O(\sim \partial^\mu u^\nu) + O(\sim (\partial^\mu u^\nu)^2) + ...$$ \hspace{1cm} (4)

- This series is known as the Gradient Expansion.
Hydrodynamics in 3+1 Dimensions

When ∂u is small we can order the series in derivatives of u^μ

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + O(\sim \partial^\mu u^\nu) + O(\sim (\partial^\mu u^\nu)^2) + ... \quad (4)$$

- This series is known as the Gradient Expansion.
- The co-efficients c_i are known as transport co-efficients and uniquely specify our theory.
Bjorken Flow

There is a phenomlogenically relevant model for Heavy Ion collisions known as Bjorken Flow.
Bjorken Flow

There is a phenomenologically relevant model for Heavy Ion collisions known as Bjorken Flow.

Figure: Head-on and Side profiles for a Lead-Lead collision. The overlapping region results in an energy density that evolves longitudinally according to hydrodynamics.
Bjorken Flow

- This energy density $T_{00} = \epsilon$ is a function of only the proper time, and the form is known to all orders:

$$\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1\tau^{-2/3} + \epsilon_2\tau^{-4/3} + ...) \quad (5)$$
Bjorken Flow

- This energy density $T_{00} = \epsilon$ is a function of only the proper time, and the form is known to all orders:

$$\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1\tau^{-2/3} + \epsilon_2\tau^{-4/3} + \ldots)$$ \hspace{1cm} (5)

- Each new factor of $\tau^{-2/3}$ comes from exactly each new order of $\partial^\mu u^\nu$ in the gradient expansion, and the transport co-efficients are related to each ϵ_i.

Bjorken Flow

- This energy density \(T_{00} = \epsilon \) is a function of only the proper time, and the form is known to all orders:

\[
\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1 \tau^{-2/3} + \epsilon_2 \tau^{-4/3} + \ldots)
\]

(5)

- Each new factor of \(\tau^{-2/3} \) comes from exactly each new order of \(\partial^\mu u^\nu \) in the gradient expansion, and the transport co-efficients are related to each \(\epsilon_i \).

- To gain some understanding of this evolving system analytically, we need a way to calculate the energy co-efficients for a QCD-like theory at Strong Coupling.
Bjorken Flow

- This energy density $T_{00} = \epsilon$ is a function of only the proper time, and the form is known to all orders:

$$\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1 \tau^{-2/3} + \epsilon_2 \tau^{-4/3} + \ldots)$$ \hspace{1cm} (5)

- Each new factor of $\tau^{-2/3}$ comes from exactly each new order of $\partial^\mu u^\nu$ in the gradient expansion, and the transport coefficients are related to each ϵ_i.

- To gain some understanding of this evolving system analytically, we need a way to calculate the energy coefficients for a QCD-like theory at Strong Coupling.

- $N = 4$ SYM (a QCD-like theory) can be re-written at infinite coupling as a gravitational theory.
The Fluid-Gravity correspondence

We can perform classical gravity calculations to find strongly coupled QFT results.

Figure: Some Gauge theories and Gravity theories are conjectured to be the same theory under a field redefinition.
The Fluid-Gravity correspondence

We can perform classical gravity calculations to find strongly coupled QFT results.

Figure: Some Gauge theories and Gravity theories are conjectured to be the same theory under a field redefinition.
The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in $N = 4$ SYM at infinite coupling is given by

$$ds^2 = -r^2 A(r, \tau) d\tau^2 + 2d\tau dr + (r\tau + 1)^2 e^{B(r, \tau)} dy^2 + r^2 e^{C(r, \tau)} dx^2_\perp$$

(6)

where r is the radial distance towards the Black Hole, and τ is the proper time.
The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in $N = 4$ SYM at infinite coupling is given by

$$ds^2 = -r^2 A(r, \tau) d\tau^2 + 2 d\tau dr + (r\tau + 1)^2 e^{B(r, \tau)} dy^2 + r^2 e^{C(r, \tau)} dx_\perp^2$$

(6)

where r is the radial distance towards the Black Hole, and τ is the proper time. A, B and C are defined by:

$$A_{\text{pert}}(\tau, r) = \sum_{i=0}^{\infty} \tau^{-\frac{2}{3}i} A_i(s), \quad A_0 = 1 - s^4$$

$$B_{\text{pert}}(\tau, r) = \sum_{i=0}^{\infty} \tau^{-\frac{2}{3}i} B_i(s), \quad B_0 = 0$$

$$C_{\text{pert}}(\tau, r) = \sum_{i=0}^{\infty} \tau^{-\frac{2}{3}i} C_i(s), \quad C_0 = 0.$$

with $s = r^{-1}\tau^{-1/3}$. (Kinoshita, Mukohyama & Nakamura [arXiv:0807.3797v2])
The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in $N = 4$ SYM at infinite coupling is given by

$$ds^2 = -r^2 A(r, \tau) d\tau^2 + 2d\tau dr + (r\tau + 1)^2 e^{B(r, \tau)} dy^2 + r^2 e^{C(r, \tau)} dx^2_{\perp}$$

(7)

where r is the radial distance towards the Black Hole, and τ is the proper time. This looks a little like a space with a blackhole a horizon sinking into the radial direction.

$r = \infty$

$r = \tau^{-\frac{1}{3}}$

Figure: Schematic cartoon of the Geometry.
We can calculate \(\epsilon_i \) directly from the solution evaluated at the boundary \((s \rightarrow 0)\).

\[
\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1 \tau^{-2/3} + \epsilon_2 \tau^{-4/3} + \ldots)
\] (8)

But after some finite order, the co-efficients start to contribute more and more!
Resurgence

We can calculate ϵ_i directly from the solution evaluated at the boundary ($s \to 0$).

$$\epsilon(\tau) = \tau^{-4/3} (\epsilon_0 + \epsilon_1 \tau^{-2/3} + \epsilon_2 \tau^{-4/3} + ...)$$ \hspace{1cm} (8)

But after some finite order, the co-efficients start to contribute more and more!

Figure: Energy density co-efficients $\epsilon_n^{1/n}$ as a function of order n.

Note that $(n!)^{1/n} \sim n$ for large n. [arXiv:1302.0697v2]
Resurgence

Using the definition of the Gamma Function:

\[
(\tau^{-\frac{2}{3}})^n = \int_0^\infty du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \frac{u^n}{n!}
\]

(9)
Resurgence

Using the definition of the Gamma Function:

\[(\tau^{-\frac{2}{3}})^n = \int_0^\infty du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \frac{u^n}{n!} \]

(9)

we can write our diverging series

\[\epsilon(\tau) = \tau^{-4/3}(\epsilon_0 + \epsilon_1 \tau^{-\frac{2}{3}} + \epsilon_2 \tau^{-4/3} + ...) \]

(10)
Resurgence

Using the definition of the Gamma Function:

\[
(\tau^{-\frac{2}{3}})^n = \int_0^\infty du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \frac{u^n}{n!}
\] \hspace{1cm} (9)

we can write our diverging series

\[
\epsilon(\tau) = \tau^{-4/3} (\epsilon_0 + \epsilon_1 \tau^{-\frac{2}{3}} + \epsilon_2 \tau^{-4/3} + \ldots)
\] \hspace{1cm} (10)

as an integral of a series with finite radius of convergence

\[
\epsilon(\tau) = \int_0^\infty du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \left(\frac{\epsilon_0}{2!} u^2 + \frac{\epsilon_1}{3!} u^3 + \frac{\epsilon_2}{4!} u^4 + \ldots \right)
\]
\[
\epsilon_B(u) \text{ known as the Borel sum}
\] \hspace{1cm} (11)
Resurgence

This convergent series is called the Borel Sum

\[\epsilon_B(u) = \frac{\epsilon_0}{2!} u^2 + \frac{\epsilon_1}{3!} u^3 + \frac{\epsilon_2}{4!} u^4 + \ldots \]

(12)
Resurgence

This convergent series is called the Borel Sum

\[\epsilon_B(u) = \frac{\epsilon_0}{2!} u^2 + \frac{\epsilon_1}{3!} u^3 + \frac{\epsilon_2}{4!} u^4 + \ldots \]

(12)

If we study \(\epsilon_B(u) \) in the complex plane we can see that the series diverges at discrete points.

Figure: Poles in \(\epsilon_B(u) \) which lead to the non-convergence of \(\epsilon(\tau) \)
Resurgence

But in principle we could have defined $\epsilon_B(u)$ through an integral along the any line in the complex plane:

$$\epsilon(\tau) = \int_0^\infty du \left(\frac{e^{-u\tau^2/3}}{\tau^{2/3}} \right) \epsilon_B(u)$$

(13)

Figure: Poles in $\epsilon_B(u)$ which lead to the non-convergence of $\epsilon(\tau)$
Resurgence

But in principle we could have defined $\epsilon_B(u)$ through an integral along the any line in the complex plane:

$$\epsilon(\tau) = \int_0^\infty du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \epsilon_B(u) \overset{!}{=} \int_{C} du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \epsilon_B(u) \quad (14)$$

Figure: Poles in $\epsilon_B(u)$ which lead to the non-convergence of $\epsilon(\tau)$
But in principle we could have defined $\epsilon_B(u)$ through an integral along the any line in the complex plane:

$$\epsilon(\tau) = \int_0^{\infty} du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \epsilon_B(u) = \int_C du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \epsilon_B(u) \quad (15)$$

This motivates a contribution to our perturbative ansatz of the form:

$$\epsilon(\tau) \sim \int_{C'} du \left(\frac{e^{-u\tau^{2/3}}}{\tau^{2/3}} \right) \frac{1}{u - \omega} \sim \tau^{-2/3} e^{-\omega\tau^{2/3}}. \quad (16)$$

(The result of evaluating the contribution from the first pole ω in integral above).
Resurgence

We study a gravity solution with given by:

\[A(\tau, r) = A_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_A(s) \]
\[B(\tau, r) = B_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_B(s) \]
\[C(\tau, r) = C_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_C(s) \]

with \(s = r^{-1} \tau^{-1/3} \).
Resurgence

We study a gravity solution with given by:

\[A(\tau, r) = A_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_A(s) \]
\[B(\tau, r) = B_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_B(s) \]
\[C(\tau, r) = C_{\text{pert}}(\tau, r) + \tau^{-2/3} e^{-\omega \tau^{2/3}} \psi_C(s). \]

with \(s = r^{-1} \tau^{-1/3} \). This implies \(\psi_A(s) = \psi_C(s) = 0 \) and an eigenvalue problem with solutions for a discrete set of \(\omega_i \):

\[(s(1 - s^4) \partial_s^2 + (-3 + s^4) \partial_s) \psi_B(s) = i\omega_i (3 - 2s) \psi_B(s) \]

(17)

These \(\omega_i \) correspond exactly to poles in the Borel Sum!
Resurgence: non-Perturbative Modes

Figure: Poles in $\epsilon_B(u)$ (Gray) plot with ω_i (Red)
Strong (but finite) Coupling

In this analysis we found the perturbative series for infinitely coupled $\mathcal{N} = 4$ SYM with classical gravity:

$$S = \int d^5x \sqrt{-g} (R + 12) \quad (18)$$
Strong (but finite) Coupling

In this analysis we found the perturbative series for infinitely coupled $\mathcal{N} = 4$ SYM wth classical gravity:

$$S = \int d^5 x \sqrt{-g} \left(R + 12 \right)$$ \hspace{1cm} (18)

We want to find them for finitely coupled $\mathcal{N} = 4$ SYM with higher derivative (Gauss-Bonnet) gravity:

$$S = \int d^5 x \sqrt{-g} \left(R + 12 + \frac{\lambda}{2} \left(R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4 R_{\mu\nu} R^{\mu\nu} + R^2 \right) \right)$$ \hspace{1cm} (19)
Figure: Poles of the $\epsilon_B(u)$ for $\lambda = 0$
Resurgence

Figure: Poles of the $\epsilon_B(u)$ for $\lambda = -0.1$
Resurgence

Figure: Poles of the $\epsilon_B(u)$ for $\lambda = -0.2$
Figure: Poles of the $\epsilon_B(u)$ for $\lambda = -0.5$
Resurgence

Figure: Poles of the $\epsilon_B(u)$ for $\lambda = -1$
Conclusion

The hydrodynamic expansion for infinitely coupled Bjorken Flow diverges but can be used to gain non-perturbative information.

We've found that the same non-perturbative modes exist at finite coupling and can be described in the same way.

Since we can predict the locations of these non-perturbative modes, our next step will be to write down the full non-perturbative solution at finite coupling.
Conclusion

- The hydrodynamic expansion for infinitely coupled Bjorken Flow diverges but can be used to gain non-perturbative information.
Conclusion

- The hydrodynamic expansion for infinitely coupled Bjorken Flow diverges but can be used to gain non-perturbative information.
- We’ve found that the same non-perturbative modes exist at finite coupling and can be described in the same way.
Conclusion

▶ The hydrodynamic expansion for infinitely coupled Bjorken Flow diverges but can be used to gain non-perturbative information.

▶ We’ve found that the same non-perturbative modes exist at finite coupling and can be described in the same way.

▶ Since we can predict the locations of these non-perturbative modes, our next step will be to write town the full non-perturbative solution at finite coupling.