Searching for heavy neutral lepton in B meson decay at LHCb experiment

Anna Ossowska
Institute of Nuclear Physics PAN
Poland
The Standard Model - Motivation

Questions:

- dark matter/dark energy
- nature of gravity,
- bariogenesis,
- three generations of fermions
- neutrino masses/oscillations

Heavy neutral leptons like Majorana neutrino can help to explain:

✓ neutrino masses/oscillations
✓ dark matter
✓ matter – antimatter asymmetry (Bariogenesis via Leptogenesis)
LHCb experiment

- a single arm spectrometer designed for precision studies of b and c hadrons in the forward direction
- angular coverage from 10 mrad to 300 (250) mrad
- the B meson decays
- Pseudorapidity range $2 < \eta < 5$

Vertex Locator
A silicon-strip vertex detector surrounding the pp interaction region. It is used to measure the particle trajectories.

Magnet
The spectrometer magnet, required for the momentum measurement of charged particles, is a warm dipole magnet providing an integrated field of about 4 Tm, which deflects charged particles in the horizontal plane. The field of the spectrometer magnet also has an impact on the trajectory of the LHC beams.

Calorimeters
The electromagnetic and hadronic calorimeters provide measurements of the energy of electrons, photons, and hadrons. These measurements are used at trigger level to identify the particles with large transverse momentum.

RICH
Charged hadrons are identified using two ring-imaging Cherenkov detectors. It is used for particle identification of low-momentum and high-momentum tracks.

Tracking System
It is used to reconstruct the trajectories of charged particles and to measure their momenta. The tracker consists of three subdetectors: The Tracker Turicensis, The Outer Tracker, The Inner Tracker.

Muon System
The muon system is used to identify and trigger muons in the events.
\[B^- \rightarrow \pi^+ \mu^- \mu^- \]

- Center-of-mass energy of 7 TeV for 2011 data and 8 TeV for 2012 data – two stripping lines
- 3 fb^{-1} of data collected with LHCb
- Neutrinos with mass in range 250-5000 MeV and lifetimes 0-1000 ps
- Normalisation channel \(B^- \rightarrow J/\psi K^- \)

Two strategies:
- Short \(\tau_N \) (S)
- Long \(\tau_N \) up to 1000 ps (L)

Selection criteria gave a good reconstruction efficiency for the signal while keeping the background suppressed.

LHCb analysis

Lepton Flavour Violation & Lepton Number Violation

No signal found → Upper Limit
$B^- \rightarrow \pi^+ \mu^- \mu^-$

- C_L_s method \rightarrow Upper Limit on BR ($B^- \rightarrow \pi^+ \mu^- \mu^-$) for N with lifetimes up to 1000 ps
- Upper limit on the coupling of a single 4th generation Majorana neutrino to μ.

Short neutrino lifetimes of 1 ps or less:

BR ($B^- \rightarrow \pi^+ \mu^- \mu^-$) $< 4.0 \times 10^{-9}$ at 95 % C.L.
$B \rightarrow \mu N \ (\rightarrow \pi e)$

- 1.67 fb^{-1} of data from Run2 (2016)
- Center-of-mass energy 13 TeV
- Mass range 150 MeV – 4500 MeV
- Lifetime 1 – 100 ps

Lepton Flavour Violation &
TOTAL LEPTON NUMBER IS CONSERVED

Analysis started recently:
- first MC samples ready
- preselection algorithm ready

Majorana neutrino decay searched inside VELO and outside VELO (tracker behind the magnet to improve acceptance)
Thank you for your attention