Study of the branching ratio of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay with the NA62 experiment

Riccardo Lollini

Università degli Studi di Perugia and INFN

on behalf of the NA62 Collaboration

56th Course of the «Ettore Majorana» International School of Subnuclear Physics – 15 June 2018
Outline

- The NA62 experiment
- The FCNC decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- Analysis strategy
- NA62 detector
- Signal region definition
- Results from 2016 data analysis
- Global Time Candidate
- Upstream Background
- Conclusions
The NA62 experiment

- **Main goal:** $\text{BR}(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% precision.

- $\text{BR}_{\text{th}}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$
 [Buras et al., JHEP 11(2015)033]

- $\text{BR}_{\exp}(K^+ \to \pi^+ \nu \bar{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$

- **Primary beam:** 400 GeV/c protons from SPS.

- **Secondary beam:** 75 GeV/c positively charged particles, 6% K^+.

- ~200 participants from ~30 institutes:
 Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC.
The FCNC decay $K^+ \to \pi^+ \nu\bar{\nu}$

- FCNC loop processes: $s\to d$ coupling and highest CKM suppression.
- Very clean theoretically.

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} = \begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix} \begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

Weak eigenstates Cabibbo Kobayashi Maskawa (CKM) matrix Mass eigenstates

\[
\begin{vmatrix}
 V_{ud} & V_{ub}^* \\
 V_{cd} & V_{cb}^* \\
 V_{td} & V_{tb}^*
\end{vmatrix} = 0
\]

\[
V_{CKM} = \begin{pmatrix}
 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
 -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
 A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
\]
The FCNC decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- **Custodial Randall-Sundrum** [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- **Simplified Z, Z' models** [Buras, Buttazzo,Knegjens, JHEP11(2015)166]
Analysis strategy

- Timing between sub-detectors $O(100\text{ps})$
- Kinematic reconstruction
- Particle identification (PID)
- Muon and photon rejection
- $15 \text{ GeV}/c < P_\pi < 35 \text{ GeV}/c$
- Signal and control regions kept blind during the analysis

\[
M_{\text{miss}}^2 = (P_K - P_\pi)^2
\]

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Branching ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \to \mu^+\nu$</td>
<td>$(63.56\pm0.11)\times10^{-2}$</td>
</tr>
<tr>
<td>$K^+ \to \pi^+\pi^0$</td>
<td>$(20.67\pm0.08)\times10^{-2}$</td>
</tr>
<tr>
<td>$K^+ \to \pi^+\pi^+$</td>
<td>$(5.583\pm0.024)\times10^{-2}$</td>
</tr>
<tr>
<td>$K^+ \to \pi^+\pi^+\nu$</td>
<td>$(4.247\pm0.024)\times10^{-5}$</td>
</tr>
</tbody>
</table>
NA62 detector

- SPS 400 GeV/c proton beam.
- Secondary 75 GeV/c charged hadron beam (70% π, 24% p, 6% K), ~750MHz @ GTK, ~5 MHz K$^+$ decay rate.
NA62 detector

Differential Cherenkov for K+ ID

Charged veto

Large angle photon veto

π/μ ID

Photon veto

Muon veto

Target

KTAG

GTK

CHANTI

LAV

STRAW

LKr Calorimeter

MUV 1,2

Iron

MUV 3

SAC

Dump

Decay Region

Beam tracking

Silicon pixel

Spectrometer tracking

LKr Calorimeter Photon veto
NA62 detector

NA62 detector components:
- LKr
- CHOD
- RICH
- STRAW
Signal region definition

- Two signal regions, blind during the analysis.
- Background estimated extrapolating the tails of the distributions in the signal region.
2016 background summary

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected events in R1 + R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+\nu\bar{\nu}$ (SM)</td>
<td>$0.267 \pm 0.001_{\text{stat}} \pm 0.029_{\text{syst}} \pm 0.032_{\text{ext}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^0(\gamma)$ IB</td>
<td>$0.064 \pm 0.007_{\text{stat}} \pm 0.006_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+\nu_\mu(\gamma)$ IB</td>
<td>$0.020 \pm 0.003_{\text{stat}} \pm 0.003_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^-e^+\nu_e$</td>
<td>$0.018^{+0.024}_{-0.017}</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^-$</td>
<td>$0.002 \pm 0.001_{\text{stat}} \pm 0.002_{\text{syst}}$</td>
</tr>
<tr>
<td>Upstream background</td>
<td>$0.050^{+0.090}_{-0.030}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$0.15 \pm 0.09_{\text{stat}} \pm 0.01_{\text{syst}}$</td>
</tr>
</tbody>
</table>

- One event observed in Region 2

 $\text{BR}(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 11 \times 10^{-10}$ @ 90% CL
 $\text{BR}(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 14 \times 10^{-10}$ @ 95% CL

- Processing of 2017-2018 data ongoing
- Expected ~20 more SM events.
Global Time Candidate

- Definition of the time of the event at software level.
- The detector I decided to use are KTAG, GTK and RICH:
 - Best time resolutions
 - Important and complementary informations about the event: the KTAG identifies the K in the beam, the GTK defines the upstream track and the RICH gives informations about the downstream track.
 - Contributions from other sub-detectors was considered, such as LKr, CHOD and NewCHOD.
- This time candidate can be used not only as a good starting point for the analysis, but also to redefine the upstream and downstream track, selecting the best hits in the definition of the sub-system candidate.
 - In particular, upstream background gives an important contribution to the total background.
Upstream background

- Possible explanations include:
 - K^+ decays upstream the decay region, matched to a pileup π^+ reconstructed in the GTK,
 - Interactions with material in the beam or in the GTK,
 - Accidental matching between the K^+ and the π^+.

- Evaluation of upstream background exploits a bifurcation technique.
 - At the moment, K^+ - π^+ association and box cut are the criteria to invert in order to select bifurcated samples.
 - Bifurcated samples used to evaluate the expected background in the signal region.
Conclusions

- One event found in R2 after unblinding the signal region in 2016 data set (0.27 expected).
- The analysis of 2016 data proves that the decay-in-flight technique of NA62 to study the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay works.
- Several improvements, both at hardware and software level, are foreseen.
 - 20 more signal events expected after analyzing the 2017 and 2018 data sets
- It is particularly important the monitoring and suppression of the upstream background.
 - A possible improvement could come from precise timing informations.
THANK YOU!
SPARES
Exotic searches

Dark Photon

Heavy Neutral Leptons

Axion-Like Particles