Anomaly Detection for Experimental Physics

EMFCSC International School of Subnuclear Physics
Gravity and Matter in the Subnuclear World
58th Course. Erice 15-24 June 2022

Eric A. Moreno (MIT)
Who am I?

• Not a theorist!
• Physics & ML Dual PhD - my passion lies at the intersection of both
• I work on:
 • Jet tagging with novel ML architectures (CMS)
 • Gravitational-wave detection (LIGO)
 • Spiking neural networks (CERN, Intel)
 • Level 1 Trigger system – extreme data reduction (CMS)
 • Dark matter experiment at Fermilab (DarkQuest)
 • Generalized intelligence models - deep metric learning
 • Collider concepts - stay tuned!
Who am I?

• Not a theorist!
• Physics & ML Dual PhD - my passion lies at the intersection of both
• I work on:
 • Jet tagging with novel ML architectures (CMS)
 • Gravitational-wave detection (LIGO)
 • Spiking neural networks (CERN, Intel)
 • Level 1 Trigger system – extreme data reduction (CMS)
 • Dark matter experiment at Fermilab (DarkQuest)
 • Generalized intelligence models - deep metric learning
 • Collider concepts - stay tuned!
I want to present you with 3 (increasingly complicated) ways* to detect anomalies in your experiment:

1. Autoencoder anomaly detection
2. Quasi-Anomalous Knowledge (QUAK)
3. Latent-Space deep metric learning

*Not all my work - in collaboration with P. Harris (MIT), S.E. Park (MIT), M. Yunis (MIT), D. Rankin (MIT), M. Pierini (CERN)
Intro to Machine Learning
Intro to Machine Learning

Input - x

Model - f(x)

Output - y

“Zichichi”
Weights θ at each of these connections encode the network’s knowledge. Weights are continually updated using gradient descent:

$$\theta \leftarrow \theta - \eta \frac{dL}{d\theta}$$
Intro to Machine Learning

Input - x

Model - f(x)

Output - y
8% “Dirac”
63% “Zichichi”
13% “Majorana”
36% “Einstein”

\[\theta - \eta \frac{dL}{d\theta} \rightarrow \theta \]
Intro to Machine Learning

Input - x

Model - $f(x)$

Output - y

1% “Dirac”
96% “Zichichi”
1% “Majorana”
2% “Einstein”

$\theta - \eta \frac{dL}{d\theta} \rightarrow \theta$
The Autoencoder

Comparing input and reconstructed data gives a model loss
Introduction to the Step 1

- Detection of gravitational waves (GWs) at LIGO

Produces: 1-D time-series strain
Unsupervised Learning: Detection

Comparing input and reconstructed data gives a model loss

Anomaly detection sequence:
1. Train autoencoder to encode and decode data on data with no anomalies.
2. Compute the highest loss on the training dataset – set as threshold for anomalous detection
3. Run autoencoder for test data, identify events that fall above detection threshold

https://github.com/eric-moreno/LSTM-Autoencoder
1. Simulates typical detector noise conditions from a PSD
2. Simulates GW waveforms for the following conditions:
 - Binary masses of black hole mergers (BBH) or neutron star mergers (BNS)
 - SNR of 5-20
 - Variable angles in the sky
3. Adds GW strain into noise for signal events
4. Data is whitened, bandpass, and normalized

Source: github.com/timothygebhard/ggwd, https://www.gwopenscience.org/data
Currently used methods

Matched Filtering

- **Current method** used by LIGO
- Compares incoming GW data to bank of simulated waveforms
- Can only identify GWs that are available in GW banks (no exotic events)

Deep Filtering

- Convolutional Neural Networks (CNNs)
- Take time-series inputs, can determine detections and estimate parameters of events
- Still can miss events that aren’t included in training set

LSTM AE Architecture

https://github.com/eric-moreno/LSTM-Autoencoder
Event Loss with Autoencoders

- LSTM AE evaluated BBH and BNS events yields promising results
- Red dotted line represents detection threshold which can be determined according to FPR
- During training, AE never receives information about any GW (signal) -> Source Agnostic
Supervised vs Unsupervised BBH

- BBH generated from SEOBNRv4 Approximant
- High mass BH (10–80+ solar masses) produce large amplitude events
- Both autoencoders perform better than supervised models generalized from BNS data
- Outperforms supervised methods (trained on equivalent length data) at below FPR = 0.04

AE can be used for:
- Triggering on high SNR rare events
- Glitch detection within LIGO apparatus
 - Glitches are hard to simulate and more easily identifiable with AE
Anomalous events at the LHC (CMS experiment)

Produces: particle tracks and jet information

Source: CMS Experiment, CERN
Semi-Supervised Learning

Knowledge of Background

Autoencoder

Step 1
2107.12698

Signal in (Mass) Window

CWOLA style

Step 0
2011.03550

Semi-Supervised Approaches

If it quaks like a duck?

QUAK

Step 2
1909.12285

Classic

Fully Supervised

Fully Supervised

1908.05318
Quasi-Anomalous Knowledge - QUAK
Quasi-Anomalous Knowledge - QUAK
Example: LHC Olympics

- Signal Dataset: $W' \rightarrow XY$
 - $W' = 3.5$ TeV
 - $X = 500$ GeV
 - $Y = 100$ GeV
- Background Dataset: 1M simulated QCD dijet events
 - **Hidden signal**: 900-event W' resonance
 - $W' = 3.8$ TeV
 - $X = 732$ GeV
 - $Y = 378$ GeV
LHC Olympics – Method 1

Method 1: Iteratively vary a selection on the signal loss and background loss and select regions of low signal loss and high background loss. Biased analysis method!
LHC Olympics – Method 2

Method 2: Separate the events by the black shaded boxes shown corresponding roughly to a uniform populations of events within each shaded region.
QUAK allows generalization capability beyond supervised algorithms! Can search for events that are similar but not the same as a hypothetical signal.
Introduction to the Step 3

Remember how I showed you this slide…
The Autoencoder

What's happening here?
• The autoencoder is constructing a latent space according to some distance metric it has designed.
• What if we take over this metric? We can make the most out of metric space properties of collider events.
• Distance metrics include:
 • Euclidean
 • Hyperbolic
 • Energy Movers Distance – For HEP
 • Power spectral distance? – For LIGO
 • Appropriate metrics can be tailored to the domain!
Does it work?

Idea from Sangeon Park et. al

Hyperbolic spaces: Better for handling graph / tree structured data, biological sequences

Euclidean spaces: Most common choice, easy to calculate volume
Embedding results – new latent space!

Idea from Sangeon Park et. al
What is it learning?

Idea from Sangeon Park et. al
Application – searching algorithmic coverage

Idea from Sangeon Park et. al
Application – searching algorithmic coverage

Idea from Sangeon Park et. al
Application – searching algorithmic coverage

Idea from Sangeon Park et. al
Application – few shot learning

State of the art: Large language models like GPT3 (175 Billion parameter AE model) learn using few-shot learning on their latent spaces.

2005.14165
We fell down the rabbit hole and learned that:

1. **Anomaly detection** is an unsupervised learning tool that can detect exotic events in a variety of different settings
2. The **QUAK-space** furthers these concepts, allowing for more complex selections and analysis
3. The holy grail of anomaly detection (in my opinion) lies in **embedded latent spaces** that contain useful physics metrics. This can be used to **test the coverage space** of different analyses, **design analyses** that cover a new phase space, or **perform a classification**!
Thank you for your attention!

Questions?
The Autoencoder

- Encoders and decoders made of:
 - Dense Neural Networks (DNN)
 - Convolutional layers (CNN)
 - Recurrent Neural Networks (RNNs) such as LSTMs or GRUs which are good with dealing with time-dependent data
 - Spiking Neural Networks (interesting proposition!)
Exploiting Dual-Detector Coincidence

LIGO Dual-Detector BBH Detection

- CNN trained w/ BBH (auc = 0.96)
- CNN trained w/ BNS (auc = 0.57)
- LSTM Autoencoder (auc = 0.79)
- GRU Autoencoder (auc = 0.73)
- CNN Autoencoder (auc = 0.72)
QUAK Anomaly Detection

- Background: QCD
- Trained Signal: $W' \rightarrow WZ$
- Anomaly: $G \rightarrow ZZ$
- Anomaly: $W_{kk} \rightarrow WR \rightarrow W + WW$
- $M_W, M_G, M_{W_{kk}} = 2500$ GeV

4.3 excess at 2500 GeV!
Optimal transport based metric: Move one event to another by moving energy around

Energy Mover’s Distance (Komiske, Metodiev, Thaler, 2019):

\[
\text{EMD}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij}\}} \sum_{ij} f_{ij} \frac{\theta_{ij}}{R} + \left| \sum_i E_i - \sum_j E'_j \right|,
\]

\[f_{ij} \geq 0, \quad \sum_i f_{ij} \leq E_i, \quad \sum_i f_{ij} \leq E'_j, \quad \sum_{ij} f_{ij} = E_{\text{min}}\]

By embedding, we can do a lot of things! Mapping complicated metrics to simpler metrics can give access to powerful algorithmic toolkits, data compression.
Variational Autoencoder (VAE)
VAE vs Normalizing Flow

Variational Autoencoder Model

- Dense Layer (256)
- Leaky Relu (256)
- Dense Layer (128)
- Leaky Relu (128)
- Dense(4)
- Dense(4)
- Mean(4)
- Log(4)
- Sample Gaussian
- Dense Layer (128)
- Leaky Relu (128)
- Dense Layer (256)
- Leaky Relu (256)
- Dense Layer (784)

Normalizing Flow Model

- Dense Layer (50)
- Leaky Relu (50)
- Dense Layer (48)
- Leaky Relu (48)
- Dense Layer (8)
- Mean(4)
- Log(4)
- Sample Gaussian
- Normalizing Flow
- Dense Layer (48)
- Leaky Relu (48)
- Dense Layer (50)
- Leaky Relu (50)
- Dense Layer (16)
• $\mu+\mu^-$ collider is necessary to efficiently explore higher energies!
• Very hard to make a muon beam – would require protons on a target, resulting on pions which decay to muons and need to be refocused and sent down a accelerator/collider – likely circular.
• Cyclotron radiation goes as m^{-4}
• Even a simple 10 TeV $\mu+\mu^-$ collider has the same CoM energy as proposed FCC-hh (100 TeV)
• Muons are fundamental particles!
Radioactive Kangaroos/Emus

Nonnegligible radiation from muons in soil